Combinatorial Theory

Combinatorial Theory

Author: Martin Aigner

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 493

ISBN-13: 3642591019

DOWNLOAD EBOOK

This book offers a well-organized, easy-to-follow introduction to combinatorial theory, with examples, notes and exercises. ". . . a very good introduction to combinatorics. This book can warmly be recommended first of all to students interested in combinatorics." Publicationes Mathematicae Debrecen


Combinatorial Methods

Combinatorial Methods

Author: Alexander Mikhalev

Publisher: Springer Science & Business Media

Published: 2004

Total Pages: 336

ISBN-13: 9780387405629

DOWNLOAD EBOOK

The main purpose of this book is to show how ideas from combinatorial group theory have spread to two other areas of mathematics: the theory of Lie algebras and affine algebraic geometry. Some of these ideas, in turn, came to combinatorial group theory from low-dimensional topology in the beginning of the 20th Century. This book is divided into three fairly independent parts. Part I provides a brief exposition of several classical techniques in combinatorial group theory, namely, methods of Nielsen, Whitehead, and Tietze. Part II contains the main focus of the book. Here the authors show how the aforementioned techniques of combinatorial group theory found their way into affine algebraic geometry, a fascinating area of mathematics that studies polynomials and polynomial mappings. Part III illustrates how ideas from combinatorial group theory contributed to the theory of free algebras. The focus here is on Schreier varieties of algebras (a variety of algebras is said to be Schreier if any subalgebra of a free algebra of this variety is free in the same variety of algebras).


Combinatorial techniques

Combinatorial techniques

Author: Sharad S. Sane

Publisher: Hindustan Book Agency

Published: 2013-01-15

Total Pages: 0

ISBN-13: 9789380250489

DOWNLOAD EBOOK

This is a basic text on combinatorics that deals with all the three aspects of the discipline: tricks, techniques and theory, and attempts to blend them. The book has several distinctive features. Probability and random variables with their interconnections to permutations are discussed. The theme of parity has been specially included and it covers applications ranging from solving the Nim game to the quadratic reciprocity law. Chapters related to geometry include triangulations and Sperner's theorem, classification of regular polytopes, tilings and an introduction to the Eulcidean Ramsey theory. Material on group actions covers Sylow theory, automorphism groups and a classification of finite subgroups of orthogonal groups. All chapters have a large number of exercises with varying degrees of difficulty, ranging from material suitable for Mathematical Olympiads to research.


Principles And Techniques In Combinatorics

Principles And Techniques In Combinatorics

Author: Chuan Chong Chen

Publisher: World Scientific

Published: 1992-07-22

Total Pages: 314

ISBN-13: 981436567X

DOWNLOAD EBOOK

A textbook suitable for undergraduate courses. The materials are presented very explicitly so that students will find it very easy to read. A wide range of examples, about 500 combinatorial problems taken from various mathematical competitions and exercises are also included.


Combinatorics

Combinatorics

Author: Russell Merris

Publisher: John Wiley & Sons

Published: 2003-09-24

Total Pages: 572

ISBN-13: 047145849X

DOWNLOAD EBOOK

A mathematical gem–freshly cleaned and polished This book is intended to be used as the text for a first course in combinatorics. the text has been shaped by two goals, namely, to make complex mathematics accessible to students with a wide range of abilities, interests, and motivations; and to create a pedagogical tool, useful to the broad spectrum of instructors who bring a variety of perspectives and expectations to such a course. Features retained from the first edition: Lively and engaging writing style Timely and appropriate examples Numerous well-chosen exercises Flexible modular format Optional sections and appendices Highlights of Second Edition enhancements: Smoothed and polished exposition, with a sharpened focus on key ideas Expanded discussion of linear codes New optional section on algorithms Greatly expanded hints and answers section Many new exercises and examples


Analytic Combinatorics

Analytic Combinatorics

Author: Philippe Flajolet

Publisher: Cambridge University Press

Published: 2009-01-15

Total Pages: 825

ISBN-13: 1139477161

DOWNLOAD EBOOK

Analytic combinatorics aims to enable precise quantitative predictions of the properties of large combinatorial structures. The theory has emerged over recent decades as essential both for the analysis of algorithms and for the study of scientific models in many disciplines, including probability theory, statistical physics, computational biology, and information theory. With a careful combination of symbolic enumeration methods and complex analysis, drawing heavily on generating functions, results of sweeping generality emerge that can be applied in particular to fundamental structures such as permutations, sequences, strings, walks, paths, trees, graphs and maps. This account is the definitive treatment of the topic. The authors give full coverage of the underlying mathematics and a thorough treatment of both classical and modern applications of the theory. The text is complemented with exercises, examples, appendices and notes to aid understanding. The book can be used for an advanced undergraduate or a graduate course, or for self-study.


Combinatorial Theory

Combinatorial Theory

Author: Marshall Hall

Publisher: John Wiley & Sons

Published: 1998-07-16

Total Pages: 464

ISBN-13: 9780471315186

DOWNLOAD EBOOK

Includes proof of van der Waerden's 1926 conjecture on permanents, Wilson's theorem on asymptotic existence, and other developments in combinatorics since 1967. Also covers coding theory and its important connection with designs, problems of enumeration, and partition. Presents fundamentals in addition to latest advances, with illustrative problems at the end of each chapter. Enlarged appendixes include a longer list of block designs.


Combinatorics: The Art of Counting

Combinatorics: The Art of Counting

Author: Bruce E. Sagan

Publisher: American Mathematical Soc.

Published: 2020-10-16

Total Pages: 304

ISBN-13: 1470460327

DOWNLOAD EBOOK

This book is a gentle introduction to the enumerative part of combinatorics suitable for study at the advanced undergraduate or beginning graduate level. In addition to covering all the standard techniques for counting combinatorial objects, the text contains material from the research literature which has never before appeared in print, such as the use of quotient posets to study the Möbius function and characteristic polynomial of a partially ordered set, or the connection between quasisymmetric functions and pattern avoidance. The book assumes minimal background, and a first course in abstract algebra should suffice. The exposition is very reader friendly: keeping a moderate pace, using lots of examples, emphasizing recurring themes, and frankly expressing the delight the author takes in mathematics in general and combinatorics in particular.


Principles and Techniques in Combinatorics

Principles and Techniques in Combinatorics

Author: Chuan-Chong Chen

Publisher: World Scientific

Published: 1992

Total Pages: 314

ISBN-13: 9789810211394

DOWNLOAD EBOOK

A textbook suitable for undergraduate courses. The materials are presented very explicitly so that students will find it very easy to read. A wide range of examples, about 500 combinatorial problems taken from various mathematical competitions and exercises are also included.