Basic Research and Technologies for Two-Stage-to-Orbit Vehicles

Basic Research and Technologies for Two-Stage-to-Orbit Vehicles

Author: Dieter Jacob

Publisher: John Wiley & Sons

Published: 2006-03-06

Total Pages: 683

ISBN-13: 3527605509

DOWNLOAD EBOOK

Focusing on basic aspects of future reusable space transportation systems and covering overall design, aerodynamics, thermodynamics, flight dynamics, propulsion, materials, and structures, this report presents some of the most recent results obtained in these disciplines. The authors are members of three Collaborative Research Centers in Aachen, Munich and Stuttgart concerned with hypersonic vehicles. A major part of the research presented here deals with experimental and numerical aerodynamic topics ranging from low speed to hypersonic flow past the external configuration and through inlet and nozzle. Mathematicians and engineers jointly worked on aspects of flight mechanics like trajectory optimization, stability, control and flying qualities. Structural research and development was predominantly coupled to the needs for high temperature resistant structures for space vehicles.


Maintaining U.S. Leadership in Aeronautics

Maintaining U.S. Leadership in Aeronautics

Author: National Research Council

Publisher: National Academies Press

Published: 1998-10-07

Total Pages: 148

ISBN-13: 0309184924

DOWNLOAD EBOOK

After the completion of the National Research Council (NRC) report, Maintaining U.S. Leadership in Aeronautics: Scenario-Based Strategic Planning for NASA's Aeronautics Enterprise (1997), the National Aeronautics and Space Administration (NASA) Office of Aeronautics and Space Transportation Technology requested that the NRC remain involved in its strategic planning process by conducting a study to identify a short list of revolutionary or breakthrough technologies that could be critical to the 20 to 25 year future of aeronautics and space transportation. These technologies were to address the areas of need and opportunity identified in the above mentioned NRC report, which have been characterized by NASA's 10 goals (see Box ES-1) in "Aeronautics & Space Transportation Technology: Three Pillars for Success" (NASA, 1997). The present study would also examine the 10 goals to determine if they are likely to be achievable, either through evolutionary steps in technology or through the identification and application of breakthrough ideas, concepts, and technologies.


Reusable Booster System

Reusable Booster System

Author: National Research Council

Publisher: National Academies Press

Published: 2013-01-10

Total Pages: 115

ISBN-13: 0309266564

DOWNLOAD EBOOK

On June 15, 2011, the Air Force Space Command established a new vision, mission, and set of goals to ensure continued U.S. dominance in space and cyberspace mission areas. Subsequently, and in coordination with the Air Force Research Laboratory, the Space and Missile Systems Center, and the 14th and 24th Air Forces, the Air Force Space Command identified four long-term science and technology (S&T) challenges critical to meeting these goals. One of these challenges is to provide full-spectrum launch capability at dramatically lower cost, and a reusable booster system (RBS) has been proposed as an approach to meet this challenge. The Air Force Space Command asked the Aeronautics and Space Engineering Board of the National Research Council to conduct an independent review and assessment of the RBS concept prior to considering a continuation of RBS-related activities within the Air Force Research Laboratory portfolio and before initiating a more extensive RBS development program. The committee for the Reusable Booster System: Review and Assessment was formed in response to that request and charged with reviewing and assessing the criteria and assumptions used in the current RBS plans, the cost model methodologies used to fame [frame?] the RBS business case, and the technical maturity and development plans of key elements critical to RBS implementation. The committee consisted of experts not connected with current RBS activities who have significant expertise in launch vehicle design and operation, research and technology development and implementation, space system operations, and cost analysis. The committee solicited and received input on the Air Force launch requirements, the baseline RBS concept, cost models and assessment, and technology readiness. The committee also received input from industry associated with RBS concept, industry independent of the RBS concept, and propulsion system providers which is summarized in Reusable Booster System: Review and Assessment.


Reusable Launch Vehicle

Reusable Launch Vehicle

Author: Committee on Reusable Launch Vehicle Technology and Test Program

Publisher: National Academies Press

Published: 1996-01-22

Total Pages: 99

ISBN-13: 0309588960

DOWNLOAD EBOOK

The key to opening the use of space to private enterprise and to broader public uses lies in reducing the cost of the transportation to space. More routine, affordable access to space will entail aircraft-like quick turnaround and reliable operations. Currently, the space Shuttle is the only reusable launch vehicle, and even parts of it are expendable while other parts require frequent and extensive refurbishment. NASA's highest priority new activity, the Reusable Launch Vehicle program, is directed toward developing technologies to enable a new generation of space launchers, perhaps but not necessarily with single stage to orbit capability. This book assesses whether the technology development, test and analysis programs in propulsion and materials-related technologies are properly constituted to provide the information required to support a December 1996 decision to build the X-33, a technology demonstrator vehicle; and suggest, as appropriate, necessary changes in these programs to ensure that they will support vehicle feasibility goals.


Aerodynamic Data of Space Vehicles

Aerodynamic Data of Space Vehicles

Author: Claus Weiland

Publisher: Springer Science & Business Media

Published: 2014-02-22

Total Pages: 360

ISBN-13: 3642541682

DOWNLOAD EBOOK

The capacity and quality of the atmospheric flight performance of space flight vehicles is characterized by their aerodynamic data bases. A complete aerodynamic data base would encompass the coefficients of the static longitudinal and lateral motions and the related dynamic coefficients. In this book the aerodynamics of 27 vehicles are considered. Only a few of them did really fly. Therefore the aerodynamic data bases are often not complete, in particular when the projects or programs were more or less abruptly stopped, often due to political decisions. Configurational design studies or the development of demonstrators usually happen with reduced or incomplete aerodynamic data sets. Therefore some data sets base just on the application of one of the following tools: semi-empirical design methods, wind tunnel tests, numerical simulations. In so far a high percentage of the data presented is incomplete and would have to be verified. Flight mechanics needs the aerodynamic coefficients as function of a lot of variables. The allocation of the aerodynamic coefficients for a particular flight operation at a specific trajectory point is conducted by an aerodynamic model. The establishment of such models is described in this book. This book is written for graduate and doctoral students to give them insight into the aerodynamics of the various flight configurations. Further for design and development engineers in industry and at research institutes (including universities) searching for an appropriate vehicle shape, as well as for non-specialists, who may be interested in this subject. The book will be helpful, too, in the case that system studies require in their concept phases the selection of suitable vehicle shapes.


Ceramic Matrix Composites

Ceramic Matrix Composites

Author: Narottam P. Bansal

Publisher: John Wiley & Sons

Published: 2014-10-27

Total Pages: 725

ISBN-13: 1118832892

DOWNLOAD EBOOK

This book is a comprehensive source of information on various aspects of ceramic matrix composites (CMC). It covers ceramic and carbon fibers; the fiber-matrix interface; processing, properties and industrial applications of various CMC systems; architecture, mechanical behavior at room and elevated temperatures, environmental effects and protective coatings, foreign object damage, modeling, life prediction, integration and joining. Each chapter in the book is written by specialists and internationally renowned researchers in the field. This book will provide state-of-the-art information on different aspects of CMCs. The book will be directed to researchers working in industry, academia, and national laboratories with interest and professional competence on CMCs. The book will also be useful to senior year and graduate students pursuing degrees in ceramic science and engineering, materials science and engineering, aeronautical, mechanical, and civil or aerospace engineering. Presents recent advances, new approaches and discusses new issues in the field, such as foreign object damage, life predictions, multiscale modeling based on probabilistic approaches, etc. Caters to the increasing interest in the application of ceramic matrix composites (CMC) materials in areas as diverse as aerospace, transport, energy, nuclear, and environment. CMCs are considered ans enabling technology for advanced aeropropulsion, space propulsion, space power, aerospace vehicles, space structures, as well as nuclear and chemical industries. Offers detailed descriptions of ceramic and carbon fibers; fiber-matrix interface; processing, properties and industrial applications of various CMC systems; architecture, mechanical behavior at room and elevated temperatures, environmental effects and protective coatings, foreign object damage, modeling, life prediction, integration/joining.