This proceedings cover the basic aspects and technical applications of non-crystalline solids from experts in different fields like polymer science, metallic glasses, basic properties, technological applications etc.
The automatic generation of parallel code from high level sequential description is of key importance to the wide spread use of high performance machine architectures. This text considers (in detail) the theory and practical realization of automatic mapping of algorithms generated from systems of uniform recurrence equations (do-lccps) onto fixed size architectures with defined communication primitives. Experimental results of the mapping scheme and its implementation are given.
The Monte Carlo method is now widely used and commonly accepted as an important and useful tool in solid state physics and related fields. It is broadly recognized that the technique of "computer simulation" is complementary to both analytical theory and experiment, and can significantly contribute to ad vancing the understanding of various scientific problems. Widespread applications of the Monte Carlo method to various fields of the statistical mechanics of condensed matter physics have already been reviewed in two previously published books, namely Monte Carlo Methods in Statistical Physics (Topics Curro Phys. , Vol. 7, 1st edn. 1979, 2ndedn. 1986) and Applications of the Monte Carlo Method in Statistical Physics (Topics Curro Phys. , Vol. 36, 1st edn. 1984, 2nd edn. 1987). Meanwhile the field has continued its rapid growth and expansion, and applications to new fields have appeared that were not treated at all in the above two books (e. g. studies of irreversible growth phenomena, cellular automata, interfaces, and quantum problems on lattices). Also, new methodic aspects have emerged, such as aspects of efficient use of vector com puters or parallel computers, more efficient analysis of simulated systems con figurations, and methods to reduce critical slowing down at i>hase transitions. Taken together with the extensive activity in certain traditional areas of research (simulation of classical and quantum fluids, of macromolecular materials, of spin glasses and quadrupolar glasses, etc.
These proceedings focus on nanostructured and non-crystalline materials, including amorphous and multiphase systems, fine particles and granular systems, thin films, polymers and other disordered systems. The topics covered are: fabrication and processing techniques; relaxation, diffusive processes and molecular motions; structure and crystallization phenomena; electric and magnetic properties; and technological applications.
This workshop is the fifth in a series devoted to the presentation and discussion of new findings in the field of noncrystalline solids such as amorphous and nanocrystalline materials, granular systems and fine particles, multiphase systems and thin films, polymers, and other disordered systems. The workshop is divided into six categories, with ten invited contributions.
The 2nd Annual 2016 International Workshop on Materials Science and Engineering (IWMSE 2016) was held in Guangzhou, Guangdong, China on August 12 - August 14, 2016. The main aim of IWMSE 2016 was to provide a platform for scientists and engineers, to get together to share their research findings, exchange ideas and identify the future directions of R&D in materials science.In this conference, we have received over 272 high-quality papers, however, only 160 articles are included in the proceedings, covering topics such as ceramics and glasses, amorphous materials, nanomaterials and thin layers, soft magnetic materials, biomaterials, polymers, photovoltaic materials, steels, tool materials, composites, as well as functional and smart materials.