This volume will contain selected papers from the lectures held at the BAIL 2010 Conference, which took place from July 5th to 9th, 2010 in Zaragoza (Spain). The papers present significant advances in the modeling, analysis and construction of efficient numerical methods to solve boundary and interior layers appearing in singular perturbation problems. Special emphasis is put on the mathematical foundations of such methods and their application to physical models. Topics in scientific fields such as fluid dynamics, quantum mechanics, semiconductor modeling, control theory, elasticity, chemical reactor theory, and porous media are examined in detail.
This volume gathers papers presented at the international conference BAIL, which was held at the University of Strathclyde, Scotland from the 14th to the 22nd of June 2018. The conference gathered specialists in the asymptotic and numerical analysis of problems which exhibit layers and interfaces. Covering a wide range of topics and sharing a wealth of insights, the papers in this volume provide an overview of the latest research into the theory and numerical approximation of problems involving boundary and interior layers.
This volume offers contributions reflecting a selection of the lectures presented at the international conference BAIL 2014, which was held from 15th to 19th September 2014 at the Charles University in Prague, Czech Republic. These are devoted to the theoretical and/or numerical analysis of problems involving boundary and interior layers and methods for solving these problems numerically. The authors are both mathematicians (pure and applied) and engineers, and bring together a large number of interesting ideas. The wide variety of topics treated in the contributions provides an excellent overview of current research into the theory and numerical solution of problems involving boundary and interior layers.
This volume collects papers associated with lectures that were presented at the BAIL 2016 conference, which was held from 14 to 19 August 2016 at Beijing Computational Science Research Center and Tsinghua University in Beijing, China. It showcases the variety and quality of current research into numerical and asymptotic methods for theoretical and practical problems whose solutions involve layer phenomena. The BAIL (Boundary And Interior Layers) conferences, held usually in even-numbered years, bring together mathematicians and engineers/physicists whose research involves layer phenomena, with the aim of promoting interaction between these often-separate disciplines. These layers appear as solutions of singularly perturbed differential equations of various types, and are common in physical problems, most notably in fluid dynamics. This book is of interest for current researchers from mathematics, engineering and physics whose work involves the accurate app roximation of solutions of singularly perturbed differential equations; that is, problems whose solutions exhibit boundary and/or interior layers.
These Proceedings contain a selection of the lectures given at the conference BAIL 2008: Boundary and Interior Layers – Computational and Asymptotic Methods, which was held from 28th July to 1st August 2008 at the University of Limerick, Ireland. The ?rst three BAIL conferences (1980, 1982, 1984) were organised by Professor John Miller in Trinity College Dublin, Ireland. The next seven were held in Novosibirsk (1986), Shanghai (1988), Colorado (1992), Beijing (1994), Perth (2002),Toulouse(2004),and Got ̈ tingen(2006).With BAIL 2008the series returned to Ireland. BAIL 2010 is planned for Zaragoza. The BAIL conferences strive to bring together mathematicians and engineers whose research involves layer phenomena,as these two groups often pursue largely independent paths. BAIL 2008, at which both communities were well represented, succeeded in this regard. The lectures given were evenly divided between app- cations and theory, exposing all conference participants to a broad spectrum of research into problems exhibiting solutions with layers. The Proceedings give a good overview of current research into the theory, app- cation and solution (by both numerical and asymptotic methods) of problems that involve boundaryand interior layers. In addition to invited and contributed lectures, the conference included four mini-symposia devoted to stabilized ?nite element methods, asymptotic scaling of wall-bounded ?ows, systems of singularly p- turbed differential equations, and problems with industrial applications (supported by MACSI, the Mathematics Applications Consortium for Science and Industry). These titles exemplify the mix of interests among the participants.
Many physical problems involve diffusive and convective (transport) processes. When diffusion dominates convection, standard numerical methods work satisfactorily. But when convection dominates diffusion, the standard methods become unstable, and special techniques are needed to compute accurate numerical approximations of the unknown solution. This convection-dominated regime is the focus of the book. After discussing at length the nature of solutions to convection-dominated convection-diffusion problems, the authors motivate and design numerical methods that are particularly suited to this class of problems. At first they examine finite-difference methods for two-point boundary value problems, as their analysis requires little theoretical background. Upwinding, artificial diffusion, uniformly convergent methods, and Shishkin meshes are some of the topics presented. Throughout, the authors are concerned with the accuracy of solutions when the diffusion coefficient is close to zero. Later in the book they concentrate on finite element methods for problems posed in one and two dimensions. This lucid yet thorough account of convection-dominated convection-diffusion problems and how to solve them numerically is meant for beginning graduate students, and it includes a large number of exercises. An up-to-date bibliography provides the reader with further reading.
This book is a tutorial written by researchers and developers behind the FEniCS Project and explores an advanced, expressive approach to the development of mathematical software. The presentation spans mathematical background, software design and the use of FEniCS in applications. Theoretical aspects are complemented with computer code which is available as free/open source software. The book begins with a special introductory tutorial for beginners. Following are chapters in Part I addressing fundamental aspects of the approach to automating the creation of finite element solvers. Chapters in Part II address the design and implementation of the FEnicS software. Chapters in Part III present the application of FEniCS to a wide range of applications, including fluid flow, solid mechanics, electromagnetics and geophysics.
This book constitutes thoroughly revised selected papers of the 6th International Conference on Numerical Analysis and Its Applications, NAA 2016, held in Lozenetz, Bulgaria, in June 2016. The 90 revised papers presented were carefully reviewed and selected from 98 submissions. The conference offers a wide range of the following topics: Numerical Modeling; Numerical Stochastics; Numerical Approx-imation and Computational Geometry; Numerical Linear Algebra and Numer-ical Solution of Transcendental Equations; Numerical Methods for Differential Equations; High Performance Scientific Computing; and also special topics such as Novel methods in computational finance based on the FP7 Marie Curie Action,Project Multi-ITN STRIKE - Novel Methods in Compu-tational Finance, Grant Agreement Number 304617; Advanced numerical and applied studies of fractional differential equations.
This book is intended for students of computational systems biology with only a limited background in mathematics. Typical books on systems biology merely mention algorithmic approaches, but without offering a deeper understanding. On the other hand, mathematical books are typically unreadable for computational biologists. The authors of the present book have worked hard to fill this gap. The result is not a book on systems biology, but on computational methods in systems biology. This book originated from courses taught by the authors at Freie Universität Berlin. The guiding idea of the courses was to convey those mathematical insights that are indispensable for systems biology, teaching the necessary mathematical prerequisites by means of many illustrative examples and without any theorems. The three chapters cover the mathematical modelling of biochemical and physiological processes, numerical simulation of the dynamics of biological networks and identification of model parameters by means of comparisons with real data. Throughout the text, the strengths and weaknesses of numerical algorithms with respect to various systems biological issues are discussed. Web addresses for downloading the corresponding software are also included.
This textbook is an introduction to Scientific Computing, in which several numerical methods for the computer-based solution of certain classes of mathematical problems are illustrated. The authors show how to compute the zeros, the extrema, and the integrals of continuous functions, solve linear systems, approximate functions using polynomials and construct accurate approximations for the solution of ordinary and partial differential equations. To make the format concrete and appealing, the programming environments Matlab and Octave are adopted as faithful companions. The book contains the solutions to several problems posed in exercises and examples, often originating from important applications. At the end of each chapter, a specific section is devoted to subjects which were not addressed in the book and contains bibliographical references for a more comprehensive treatment of the material. From the review: ".... This carefully written textbook, the third English edition, contains substantial new developments on the numerical solution of differential equations. It is typeset in a two-color design and is written in a style suited for readers who have mathematics, natural sciences, computer sciences or economics as a background and who are interested in a well-organized introduction to the subject." Roberto Plato (Siegen), Zentralblatt MATH 1205.65002.