Backscattered scanning electron microscopy (BSE) reveals the minerals, textures, and fabrics of sediments and rocks in much greater detail than is possible with conventional optical microscopy. Backscattered Scanning Electron Microscopy provides a concise summary of the BSE technique. This comprehensive guide uses abundant images to illustrate the type of information BSE yields and the application of the technique to the study of sediments and sedimentary rocks. The authors review the use of this petrographic technique on all the major sedimentary rock types, including sediment grains, sandstones, shales, carbonate rocks, rock varnish, and glauconite. They also describe image analysis techniques that allow quantification of backscattered scanning electron microscope images. Heavily illustrated and lucidly written, this book will provide researchers and graduate students with the most current research on this important geological tool.
Backscattered scanning electron microscopy (BSE) reveals the minerals, textures, and fabrics of sediments and rocks in much greater detail than is possible with conventional optical microscopy. Backscattered Scanning Electron Microscopy provides a concise summary of the BSE technique. This comprehensive guide uses abundant images to illustrate the type of information BSE yields and the application of the technique to the study of sediments and sedimentary rocks. The authors review the use of this petrographic technique on all the major sedimentary rock types, including sediment grains, sandstones, shales, carbonate rocks, rock varnish, and glauconite. They also describe image analysis techniques that allow quantification of backscattered scanning electron microscope images. Heavily illustrated and lucidly written, this book will provide researchers and graduate students with the most current research on this important geological tool.
This is a guide to imaging techniques for sedimentologists, paleolimnologists, paleoceanographers and microscopists involved in paleoenvironmental reconstruction. Case studies illustrate the range of information obtainable from different sediments (marine, lacustrine, aeolian) and different types of samples (cores, embedded blocks, microscopic slides) using different regions of the electromagnetic spectrum (visible, UV, IR, X-ray). Includes comprehensive protocols, guidelines, and recommendations for the use of low cost image analysis techniques.
Advanced textbook outlining the physical, chemical, and biological properties of sedimentary rocks through petrographic microscopy, geochemical techniques, and field study.
Forensic geoscience is an increasingly important sub-discipline within geoscience and forensic science. Although minerals, soils, dusts and rock fragments have been used as only begun to be recognized in the last ten years or so. The police and other investigative bodies are keen to encourage such developments in the fight against crime, particularly since many criminals show a high level of forensic awareness with regard to evidence such as fingerprints, blood and other body fluids. The papers in this volume illustrate some of the main principles, techniques and applications in current forensic geoscience, covering research and casework in the UK and internationally. The techniques described range from macro-scale field geophysical investigations to micro-scale laboratory studies of the chemical and textural properties of individual particles. In addition to forensic applications, many of these techniques have broad utility in geological, geomorphological, soil science and archaeological research.
The forensic potential of geological and soil evidence has been recognized for more than a century, but recently these types of evidence are used much more widely as an investigative intelligence tool and as evidence in court. There is, however, still a poor understanding of the potential value and the limitations of geological and soil evidence am
There are three types of rock—igneous, metamorphic and sedimentary. Sedimentary rocks form from the weathering, erosion, transportation and deposition of older rocks. Applied Sedimentology describes the formation, transportation and deposition of sediment, and the post-depositional processes that change soft sediment into sedimentary rock. Sedimentary rocks include sandstones, limestones and mudstones. All the world's coal, most of its water and fossil fuels, and many mineral deposits occur in sedimentary rocks. Applied Sedimentology shows how the study of sediments aids the exploration for and exploitation of natural resources, including water, ores and hydrocarbons.* Completely revised edition; Like its precursor, it describes sediments from sand grains to sedimentary basins; Features up-to date account and critique of sequence and cyclostratigraphy * Extensively illustrated with photos and remotely sensed sea bed images describing sedimentary processes, products and depositional systems; Color plates illustrate sediment textures, lithologies, pore types, diagenetic textures, and carbonate and clastic sequence stratigraphic models* Emphasises the applications of sedimentology to the exploration for and exploitation of natural resources, including water, ores and hydrocarbons* Extensive references and up-to-date bibliography for further study
This book provides a primary reference source for nuclear forensic science, including the vastly disciplinary nature of the overall endeavor for questioned weapons of mass-destruction specimens. Nothing like this exists even in the classified material. For the first time, the fundamental principles of radioforensic analysis, all pertinent protocols and procedures, computer modeling development, interpretational insights, and attribution considerations are consolidated into one convenient source. The principles and techniques so developed are then demonstrated and discussed in their applications to real-world investigations and casework conducted over the past several years.
Sustainable Geoscience for Natural Gas SubSurface Systems delivers many of the scientific fundamentals needed in the natural gas industry, including coal-seam gas reservoir characterization and fracture analysis modeling for shale and tight gas reservoirs. Advanced research includes machine learning applications for well log and facies analysis, 3D gas property geological modeling, and X-ray CT scanning to reduce environmental hazards. Supported by corporate and academic contributors, along with two well-distinguished editors, the book gives today's natural gas engineers both fundamentals and advances in a convenient resource, with a zero-carbon future in mind. - Includes structured case studies to illustrate how new principles can be applied in practical situations - Helps readers understand advanced topics, including machine learning applications to optimize predictions, controls and improve knowledge-based applications - Provides tactics to accelerate emission reductions - Teaches gas fracturing mechanics aimed at reducing environmental impacts, along with enhanced oil recovery technologies that capture carbon dioxide
The changing focus and approach of geomorphic research suggests that the time is opportune for a summary of the state of discipline. The number of peer-reviewed papers published in geomorphic journals has grown steadily for more than two decades and, more importantly, the diversity of authors with respect to geographic location and disciplinary background (geography, geology, ecology, civil engineering, computer science, geographic information science, and others) has expanded dramatically. As more good minds are drawn to geomorphology, and the breadth of the peer-reviewed literature grows, an effective summary of contemporary geomorphic knowledge becomes increasingly difficult. The fourteen volumes of this Treatise on Geomorphology will provide an important reference for users from undergraduate students looking for term paper topics, to graduate students starting a literature review for their thesis work, and professionals seeking a concise summary of a particular topic. Information on the historical development of diverse topics within geomorphology provides context for ongoing research; discussion of research strategies, equipment, and field methods, laboratory experiments, and numerical simulations reflect the multiple approaches to understanding Earth’s surfaces; and summaries of outstanding research questions highlight future challenges and suggest productive new avenues for research. Our future ability to adapt to geomorphic changes in the critical zone very much hinges upon how well landform scientists comprehend the dynamics of Earth’s diverse surfaces. This Treatise on Geomorphology provides a useful synthesis of the state of the discipline, as well as highlighting productive research directions, that Educators and students/researchers will find useful. Geomorphology has advanced greatly in the last 10 years to become a very interdisciplinary field. Undergraduate students looking for term paper topics, to graduate students starting a literature review for their thesis work, and professionals seeking a concise summary of a particular topic will find the answers they need in this broad reference work which has been designed and written to accommodate their diverse backgrounds and levels of understanding Editor-in-Chief, Prof. J. F. Shroder of the University of Nebraska at Omaha, is past president of the QG&G section of the Geological Society of America and present Trustee of the GSA Foundation, while being well respected in the geomorphology research community and having won numerous awards in the field. A host of noted international geomorphologists have contributed state-of-the-art chapters to the work. Readers can be guaranteed that every chapter in this extensive work has been critically reviewed for consistency and accuracy by the World expert Volume Editors and by the Editor-in-Chief himself No other reference work exists in the area of Geomorphology that offers the breadth and depth of information contained in this 14-volume masterpiece. From the foundations and history of geomorphology through to geomorphological innovations and computer modelling, and the past and future states of landform science, no "stone" has been left unturned!