The recent widespread use of mobile Internet together with the advent of numerous smart applications has led to the explosive growth of the mobile data traffic in the last few years. This momentum of mobile traffic will continue due to the emerging needs of connecting people, machines, and applications through mobile infrastructure. As a result, the current and projected dramatic growth of mobile data traffic necessitates the development of fifth-generation (5G) mobile communications technology. As a result, there is significant interest in the development of innovative backhaul and fronthaul solutions for ultra-dense heterogeneous networks. This book brings together mobile stakeholders from academia and industry to identify and promote technical challenges and recent results related to smart backhaul/fronthaul research for future communication system such as 5G. Moreover, it presents a comprehensive analysis on different types of backhaul/fronthaul technology and topology. It considers already available topology for backhauling/fronthauling and explains all fundamental requirements for deploying future smart and efficient backhauling/fronthauling infrastructure from an architectural, technical and business point of view and presents real life applications and use cases. Expanding on standardization activities, this book consists of multiple channels on specific research topics. The chapters are logically organized as the authors approach the subject from overview to specifics and from a lower to higher layer direction.
The recent widespread use of mobile Internet together with the advent of numerous smart applications has led to the explosive growth of the mobile data traffic in the last few years. This momentum of mobile traffic will continue due to the emerging needs of connecting people, machines, and applications through mobile infrastructure. As a result, the current and projected dramatic growth of mobile data traffic necessitates the development of fifth-generation (5G) mobile communications technology. As a result, there is significant interest in the development of innovative backhaul and fronthaul solutions for ultra-dense heterogeneous networks. This book brings together mobile stakeholders from academia and industry to identify and promote technical challenges and recent results related to smart backhaul/fronthaul research for future communication system such as 5G. Moreover, it presents a comprehensive analysis on different types of backhaul/fronthaul technology and topology. It considers already available topology for backhauling/fronthauling and explains all fundamental requirements for deploying future smart and efficient backhauling/fronthauling infrastructure from an architectural, technical and business point of view and presents real life applications and use cases. Expanding on standardization activities, this book consists of multiple channels on specific research topics. The chapters are logically organized as the authors approach the subject from overview to specifics and from a lower to higher layer direction.
The mobile market has experienced unprecedented growth over the last few decades. Consumer trends have shifted towards mobile internet services supported by 3G and 4G networks worldwide. Inherent to existing networks are problems such as lack of spectrum, high energy consumption, and inter-cell interference. These limitations have led to the emergence of 5G technology. It is clear that any 5G system will integrate optical communications, which is already a mainstay of wide area networks. Using an optical core to route 5G data raises significant questions of how wireless and optical can coexist in synergy to provide smooth, end-to-end communication pathways. Optical and Wireless Convergence for 5G Networks explores new emerging technologies, concepts, and approaches for seamlessly integrating optical-wireless for 5G and beyond. Considering both fronthaul and backhaul perspectives, this timely book provides insights on managing an ecosystem of mixed and multiple access network communications focused on optical-wireless convergence. Topics include Fiber–Wireless (FiWi), Hybrid Fiber-Wireless (HFW), Visible Light Communication (VLC), 5G optical sensing technologies, approaches to real-time IoT applications, Tactile Internet, Fog Computing (FC), Network Functions Virtualization (NFV), Software-Defined Networking (SDN), and many others. This book aims to provide an inclusive survey of 5G optical-wireless requirements, architecture developments, and technological solutions.
The widespread use of mobile internet and smart applications has led to an explosive growth in mobile data traffic, which will continue due to the emerging need to connect people, machines, and applications in an ubiquitous manner through the mobile infrastructure. In achieving these expectations, operators and carriers are planning to improve the user experience and the overall network performance. However, the efficient and satisfactory operation of all these densely-deployed networks hinges on a suitable backhaul and fronthaul provisioning. The research community is working against an extremely tight timeline to provide innovative technologies with extensive performance evaluation metrics along with the required standardization milestones, hardware, and components for a fully deployed network by 2020 and beyond. Access, Fronthaul and Backhaul Networks for 5G & Beyond provides an overview from both academic and industrial stakeholders of innovative backhaul/fronthaul solutions, covering a wide spectrum of underlying themes ranging from the recent thrust in edge caching for backhaul relaxation to mmWave based fronthauling for radio access networks. With 20 chapters from leading international researchers in the field, this book is essential reading for engineers, researchers, designers, architects, technicians, students, and service providers in the field of networking and mobile, wireless, and computing technologies working towards the deployment of 5G networks.
mmWave Massive MIMO: A Paradigm for 5G is the first book of its kind to hinge together related discussions on mmWave and Massive MIMO under the umbrella of 5G networks. New networking scenarios are identified, along with fundamental design requirements for mmWave Massive MIMO networks from an architectural and practical perspective. Working towards final deployment, this book updates the research community on the current mmWave Massive MIMO roadmap, taking into account the future emerging technologies emanating from 3GPP/IEEE. The book's editors draw on their vast experience in international research on the forefront of the mmWave Massive MIMO research arena and standardization. This book aims to talk openly about the topic, and will serve as a useful reference not only for postgraduates students to learn more on this evolving field, but also as inspiration for mobile communication researchers who want to make further innovative strides in the field to mark their legacy in the 5G arena. - Contains tutorials on the basics of mmWave and Massive MIMO - Identifies new 5G networking scenarios, along with design requirements from an architectural and practical perspective - Details the latest updates on the evolution of the mmWave Massive MIMO roadmap, considering future emerging technologies emanating from 3GPP/IEEE - Includes contributions from leading experts in the field in modeling and prototype design for mmWave Massive MIMO design - Presents an ideal reference that not only helps postgraduate students learn more in this evolving field, but also inspires mobile communication researchers towards further innovation
Nowadays, the Internet plays a vital role in our lives. It is currently one of the most effective media that is shifting to reach into all areas in today's society. While we move into the next decade, the future of many emerging technologies (IoT, cloud solutions, automation and AI, big data, 5G and mobile technologies, smart cities, etc.) is highly dependent on Internet connectivity and broadband communications. The demand for mobile and faster Internet connectivity is on the rise as the voice, video, and data continue to converge to speed up business operations and to improve every aspect of human life. As a result, the broadband communication networks that connect everything on the Internet are now considered a complete ecosystem routing all Internet traffic and delivering Internet data faster and more flexibly than ever before. This book gives an insight into the latest research and practical aspects of the broadband communication networks in support of many emerging paradigms/applications of global Internet from the traditional architecture to the incorporation of smart applications. This book includes a preface and introduction by the editors, followed by 20 chapters written by leading international researchers, arranged in three parts. This book is recommended for researchers and professionals in the field and may be used as a reference book on broadband communication networks as well as on practical uses of wired/wireless broadband communications. It is also a concise guide for students and readers interested in studying Internet connectivity, mobile/optical broadband networks and concepts/applications of telecommunications engineering.
Modern, current, and future communications/processing aspects motivate basic information-theoretic research for a wide variety of systems for which we do not have the ultimate theoretical solutions (for example, a variety of problems in network information theory as the broadcast/interference and relay channels, which mostly remain unsolved in terms of determining capacity regions and the like). Technologies such as 5/6G cellular communications, Internet of Things (IoT), and mobile edge networks, among others, not only require reliable rates of information measured by the relevant capacity and capacity regions, but are also subject to issues such as latency vs. reliability, availability of system state information, priority of information, secrecy demands, energy consumption per mobile equipment, sharing of communications resources (time/frequency/space), etc. This book, composed of a collection of papers that have appeared in the Special Issue of the Entropy journal dedicated to “Information Theory for Data Communications and Processing”, reflects, in its eleven chapters, novel contributions based on the firm basic grounds of information theory. The book chapters address timely theoretical and practical aspects that constitute both interesting and relevant theoretical contributions, as well as direct implications for modern current and future communications systems.
A comprehensive summary of theoretical and practical developments in LTE Heterogeneous Networks The last decade has witnessed the proliferation of mobile broadband data and the trend is likely to increase in the coming years. Current cellular networks are ill equipped to deal with this surge in demand. To satisfy user demand and maximize profits, a new paradigm to operate networks is needed. Heterogeneous networks, that deploy an overlay of small cells with limited coverage and transmit power, over a macro coverage area is the solution by providing capacity and coverage where it is needed. This book presents a comprehensive overview of small cell based heterogeneous networks within the framework of 3GPP LTE-Advanced which is the major enabler of current and future heterogeneous networks. The book first establishes the basics of LTE standards 8 -10. Wherever relevant, the underlying theory of wireless communications is explained and the signaling and protocol aspects of LTE Releases 8-10 are presented. Next the book presents a systematic study of the inter cell interference (eICIC and FeICIC) mechanisms that have been standardized in LTE releases 10 and 11 to mitigate the interference arising in heterogeneous networks. From simple blank subframe design and implementation, the book discusses more advanced transceiver signal processing and carrier aggregation (CA) based mechanisms to improve performance. Besides data, control channel enhancements such as enhanced PDCCH (ePDCCH) are also discussed. Subsequently the book discusses the possibility of base stations being allowed to coordinate to manage interference. This technique, called CoMP, has the potential of vastly improving network performance. However several practical challenges first have to be overcome before this potential can be realized. The book presents the different CoMP categories introduced in LTE release 11, the required signal processing and the changes that were introduced in Release-11 for supporting CoMP. The book then presents the state of the art developments in heterogeneous networks that are currently taking place in 3GPP with the initiation of Release 12. A whole array of new technologies have been introduced such as dynamic switching of small cells, new carrier types with reduced control signaling, dynamic reconfiguration of TDD-LTE, joint configuration of TDD and FDD via carrier aggregation and lastly advanced MIMO signal processing with three dimensional beamforming. All these technologies will work in unison leading to efficient operations of small cells. The authors thus comprehensively summarize the advances in heterogeneous networks over the last couple of years as reflected in various LTE releases and then look ahead at what to expect in the future. Fully illustrated throughout and with an accompanying website including Matlab code for simulating heterogeneous networks, LTE channel models, and References to 3GPP specifications, contributions, and updates on recent standardization activities. The authors, being involved in LTE standardization, are well placed to give an excellent view on this topic, including valuable background and design rationale. A comprehensive summary of wireless communications theory and practical developments in LTE heterogeneous networks. Authors are experts in this field and are active members in standardization proceedings, enabling up-to-date coverage of current developments Multiple case studies explain network design optimization of various heterogeneous network deployments. Accompanying website includes Matlab code for simulating heterogeneous networks, LTE channel models, and References to 3GPP specifications, contributions, and updates on recent standardization activities Essential reading for Engineers and practitioners in wireless industry.
This book provides a comprehensive description of an optical communications technology known as free space optical—a next-generation communications network that uses optical signals through the atmosphere instead of fiber, RF, or microwaves. This technology potentially offers more complex ultrabandwidth communication services simultaneously to multiple users and in a very short time, compared to fiber optic technology. This text presents established and new advancements drawn from the latest research and development in components, networking, operation, and practices. This book describes the FSO network concepts in simple language. It provides comprehensive coverage in an easy-to-understand, progressive style that starts from the physics of the atmosphere and how it affects optical communications; continues with the design of a network node; and concludes with fiberless network applications from point-to-point to mesh topology. Important areas discussed include: Propagation of light in the atmosphere and phenomena that affect light propagation FSO transceiver design Point-to-point FSO systems Ring FSO systems Mesh-FSO systems and integrating the Mesh-FSO with the public network WDM Mesh-FSO FSO network security FSO-specific applications To meet the needs of both academia and industry, key mathematical formulas are presented along with descriptions, while extensive mathematical analyses are minimized or avoided. Free Space Optical Networks for Ultra-Broad Band Services serves as an ideal text for network communication professionals who enter the free space optical communication field, graduate students majoring in optical communications, optical communication engineers, researchers, managers, and consultants.
This book investigates new enabling technologies for Fi-Wi convergence. The editors discuss Fi-Wi technologies at the three major network levels involved in the path towards convergence: system level, network architecture level, and network management level. The main topics will be: a. At system level: Radio over Fiber (digitalized vs. analogic, standardization, E-band and beyond) and 5G wireless technologies; b. Network architecture level: NGPON, WDM-PON, BBU Hotelling, Cloud Radio Access Networks (C-RANs), HetNets. c. Network management level: SDN for convergence, Next-generation Point-of-Presence, Wi-Fi LTE Handover, Cooperative MultiPoint.