Azimuthal Anisotropy in Au+Au Collisions at (square Root)s{sub NN}

Azimuthal Anisotropy in Au+Au Collisions at (square Root)s{sub NN}

Author:

Publisher:

Published: 2004

Total Pages: 23

ISBN-13:

DOWNLOAD EBOOK

The results from the STAR Collaboration on directed flow (v1), elliptic flow (v2), and the fourth harmonic (v4) in the anisotropic azimuthal distribution of particles from Au+Au collisions at (square root)s{sub NN} = 200 GeV are summarized and compared with results from other experiments and theoretical models. Results for identified particles are presented and fit with a Blast Wave model. For v2, scaling with the number of constituent quarks and parton coalescence is discussed. For v4, scaling with v22 and quark coalescence predictions for higher harmonic flow is discussed. The different anisotropic flow analysis methods are compared and nonflow effects are extracted from the data. For v2, scaling with the number of constituent quarks and parton coalescence are discussed. For v22 and quark coalescence are discussed.


Azimuthal Anisotropy of Different Quark-flavored Particles in High Energy "simulated" Proton-Proton Collisions

Azimuthal Anisotropy of Different Quark-flavored Particles in High Energy

Author: Mahmoud Rateb

Publisher:

Published: 2023

Total Pages: 0

ISBN-13:

DOWNLOAD EBOOK

Abstract: Anisotropic flow in high energy heavy-ion collisions is taken as a key evidence for the formation of QGP for brief seconds right after the collisions. Hydrodynamic models including QGP formation are accurate at predicting the azimuthal anisotropy of the produced particles at low transverse momenta. At high momenta however, hydrodynamic models predict no azimuthal anisotropy for particles of different masses and quark-flavors; the logic being that because of their high momenta, the particles pass through the media without having any time to have any reactivity. This is contrary to results from experiments where measurements of particles of different quark flavors show non-zero elliptic flow. To study this deviation, we run PYTHIA simulation of proton-proton collisions at center- of-mass energies equivalent to those at RHIC and LHC; 200 GeV and 13 TeV. Since in PYTHIA simulations no QGP if formed, and there is no final-state interaction, results in our simulation would act as probes to be compared to the results of elliptic flow from real experiments. Our results showed non-zero results for the elliptic flow of pions, heavy mesons and direct photons. Those results are evident of the possible bias in the way the reaction plane is calculated, since all the other factors are controlled for in the PYTHIA simulations. To make up for this inherent bias, the results from PYTHIA should be subtracted from the results of elliptic flow in real experiments, to end up with unbiased results for elliptic flow from the different colliders.


Systematic Study of Azimuthal Anisotropy in Cu + Cu and Au + Au Collisions at {u221A}sNN

Systematic Study of Azimuthal Anisotropy in Cu + Cu and Au + Au Collisions at {u221A}sNN

Author:

Publisher:

Published: 2015

Total Pages:

ISBN-13:

DOWNLOAD EBOOK

We have studied the dependence of azimuthal anisotropy v2 for inclusive and identified charged hadrons in Au+Au and Cu+Cu collisions on collision energy, species, and centrality. The values of v2 as a function of transverse momentum pT and centrality in Au+Au collisions at √sNN=200 and 62.4 GeV are the same within uncertainties. However, in Cu+Cu collisions we observe a decrease in v2 values as the collision energy is reduced from 200 to 62.4 GeV. The decrease is larger in the more peripheral collisions. By examining both Au+Au and Cu+Cu collisions we find that v2 depends both on eccentricity and the number of participants, Npart. We observe that v2 divided by eccentricity (?) monotonically increases with Npart and scales as N1/3part. Thus, the Cu+Cu data at 62.4 GeV falls below the other scaled v2 data. For identified hadrons, v2 divided by the number of constituent quarks nq is independent of hadron species as a function of transverse kinetic energy KET=mT–m between 0.1KEsubT/sub/nsubq/sub1 GeV. Combining all of the above scaling and normalizations, we observe a near-universal scaling, with the exception of the Cu+Cu data at 62.4 GeV, of vsub2/sub/(nsubq/sub∙????????Nsup1/3/supsubpart/sub) vs KEsubT/sub/n


Systematic Study of Azimuthal Anisotropy in Cu + Cu and Au + Au Collisions at SNN

Systematic Study of Azimuthal Anisotropy in Cu + Cu and Au + Au Collisions at SNN

Author:

Publisher:

Published: 2015

Total Pages:

ISBN-13:

DOWNLOAD EBOOK

In this paper, we have studied the dependence of azimuthal anisotropy v2 for inclusive and identified charged hadrons in Au+Au and Cu+Cu collisions on collision energy, species, and centrality. The values of v2 as a function of transverse momentum pT and centrality in Au+Au collisions at √sNN=200 and 62.4 GeV are the same within uncertainties. However, in Cu+Cu collisions we observe a decrease in v2 values as the collision energy is reduced from 200 to 62.4 GeV. The decrease is larger in the more peripheral collisions. By examining both Au+Au and Cu+Cu collisions we find that v2 depends both on eccentricity and the number of participants, Npart. We observe that v2 divided by eccentricity (?) monotonically increases with Npart and scales as N1/3part. Thus, the Cu+Cu data at 62.4 GeV falls below the other scaled v2 data. For identified hadrons, v2 divided by the number of constituent quarks nq is independent of hadron species as a function of transverse kinetic energy KET=mT–m between 0.1KEsubT/sub/nsubq/sub1 GeV. Finally, combining all of the above scaling and normalizations, we observe a near-universal scaling, with the exception of the Cu+Cu data at 62.4 GeV, of vsub2/sub/(nsubq/sub∙????????Nsup1/3/supsubpart/sub) vs KEsubT/sub/n


Azimuthal Anisotropy of Charged Particles at High Transverse Momenta in PbPb Collisions at Sqrt(s[NN]

Azimuthal Anisotropy of Charged Particles at High Transverse Momenta in PbPb Collisions at Sqrt(s[NN]

Author:

Publisher:

Published: 2012

Total Pages: 27

ISBN-13:

DOWNLOAD EBOOK

The azimuthal anisotropy of charged particles in PbPb collisions at nucleon-nucleon center-of-mass energy of 2.76 TeV is measured with the CMS detector at the LHC over an extended transverse momentum (pt) range up to approximately 60 GeV. The data cover both the low-pt region associated with hydrodynamic flow phenomena and the high-pt region where the anisotropies may reflect the path-length dependence of parton energy loss in the created medium. The anisotropy parameter (v2) of the particles is extracted by correlating charged tracks with respect to the event-plane reconstructed by using the energy deposited in forward-angle calorimeters. For the six bins of collision centrality studied, spanning the range of 0-60% most-central events, the observed v2 values are found to first increase with pt, reaching a maximum around pt = 3 GeV, and then to gradually decrease to almost zero, with the decline persisting up to at least pt = 40 GeV over the full centrality range measured.


Elliptic Flow Study of Charmed Mesons in 200 Gev Au+au Collisions at the Relativistic Heavy Ion Collider

Elliptic Flow Study of Charmed Mesons in 200 Gev Au+au Collisions at the Relativistic Heavy Ion Collider

Author: Ayman I.A. Hamad

Publisher:

Published: 2017

Total Pages: 0

ISBN-13:

DOWNLOAD EBOOK

Quantum Chromodynamics (QCD), the theory of the strong interaction between quarks and gluons, predicts that at extreme conditions of high temperature and/or density, quarks and gluons are no longer confined within individual hadrons. This new deconfined state of quarks and gluons is called Quark-Gluon Plasma (QGP). The Universe was in this QGP state a few microseconds after the Big Bang. The Relativistic Heavy Ion Collider (RHIC) at Brookhaven National Laboratory (BNL) on Long Island, NY was built to create and study the properties of QGP.Due to their heavy masses, quarks with heavy flavor (charm and bottom) are mainly created during the early, energetic stages of the collisions. Heavy flavor is considered to be a unique probe for QGP studies, since it propagates through all phases of a collision, and is affected by the hot and dense medium throughout its evolution. Initial studies, via indirect reconstruction of heavy flavor using their decay electrons, indicated a much higher energy loss by these quarks compared to model predictions, with a magnitude comparable to that of light quarks. Mesons such as D0 could provide information about the interaction of heavy quarks with the surrounding medium through measurements such as elliptic flow. Such data help constrain the transport parameters of the QGP medium and reveal its degree of thermalization.Because heavy hadrons have a low production yield and short lifetime (e.g. ct = 120μm for D0), it is very challenging to obtain accurate measurements of open heavy flavor in heavy-ion collisions, especially since the collisions also produce large quantities of light-flavor particles. Also due to their short lifetime, it is difficult to distinguish heavy-flavor decay vertices from the primary collision vertex; one needs a very high precision vertex detector in order to separate and reconstruct the decay of the heavy flavor particles in the presence of thousands of other particles produced in each collision.The STAR collaboration built a new micro-vertex detector and installed it in the experiment in 2014. This state-of-the-art silicon pixel technology is named the Heavy Flavor Tracker (HFT). The HFT was designed in order to perform direct topological reconstruction of the weak decay products from hadrons that include a heavy quark. The HFT consists of four layers of silicon, and it improves the track pointing resolution of the STAR experiment from a few mm to around 30 ℗æm for charged pions at a momentum of 1 GeV/c.In this dissertation, I focus on one of the main goals of the HFT detector, which is to study the elliptic flow v2 (a type of azimuthal anisotropy) for D0 mesons in Au+Au collisions at vsNN = 200 GeV. My analysis is based on the 2014 data set (about 1.2 billion collisions covering all impact parameters) that include data from the HFT detector. There are two new and unique analysis elements used in this dissertation. First, I performed the analysis using a Kalman filter algorithm to reconstruct the charmed-meson candidates. The standard reconstruction is via a simple helix-swim method. The advantage of using the Kalman algorithm is in the use of the full error matrix of each track in the vertex estimation and reconstruction of the properties of the heavy-flavor parent particle. Second, I also used the Tool for Multivariate Analysis (TMVA), a ROOT-environment tool, to its full potential for signal significance optimization, instead of the previous approach based on a set of fixed cuts for separating signal from background.This dissertation presents the elliptic component (v2) of azimuthal anisotropy of D0 mesons as a function of transverse momentum, pT . The centrality (impact parameter) dependence of D0 v2(pT) is also studied. Results are compared with similar studies involving light quarks, and with the predictions of several theoretical models.