Driverless

Driverless

Author: Hod Lipson

Publisher: MIT Press

Published: 2016-09-23

Total Pages: 324

ISBN-13: 0262035227

DOWNLOAD EBOOK

When human drivers let intelligent software take the wheel: the beginning of a new era in personal mobility.


Introduction to Driverless Self-Driving Cars

Introduction to Driverless Self-Driving Cars

Author: Lance Eliot

Publisher: Lbe Press Publishing

Published: 2018

Total Pages: 346

ISBN-13: 9780692052464

DOWNLOAD EBOOK

Based on his popular AI Insider column and reader feedback, this is Dr. Eliot's highly rated introductory coverage on the emergence and advent of autonomous driverless self-driving cars. Readable for everyone, discover the underlying technology that makes self-driving cars achievable. Furthermore, learn about the key business aspects, economics, and politics that will shape the future of self-driving cars. Essential elements of Artificial Intelligence (AI) and Machine Learning are covered, along with blockchain, bitcoins, genetic algorithms, neural networks, and more.


Artificial Intelligence for Autonomous Vehicles

Artificial Intelligence for Autonomous Vehicles

Author: Sathiyaraj Rajendran

Publisher: John Wiley & Sons

Published: 2024-02-27

Total Pages: 276

ISBN-13: 111984763X

DOWNLOAD EBOOK

With the advent of advanced technologies in AI, driverless vehicles have elevated curiosity among various sectors of society. The automotive industry is in a technological boom with autonomous vehicle concepts. Autonomous driving is one of the crucial application areas of Artificial Intelligence (AI). Autonomous vehicles are armed with sensors, radars, and cameras. This made driverless technology possible in many parts of the world. In short, our traditional vehicle driving may swing to driverless technology. Many researchers are trying to come out with novel AI algorithms that are capable of handling driverless technology. The current existing algorithms are not able to support and elevate the concept of autonomous vehicles. This addresses the necessity of novel methods and tools focused to design and develop frameworks for autonomous vehicles. There is a great demand for energy-efficient solutions for managing the data collected with the help of sensors. These operations are exclusively focused on non-traditional programming approaches and depend on machine learning techniques, which are part of AI. There are multiple issues that AI needs to resolve for us to achieve a reliable and safe driverless technology. The purpose of this book is to find effective solutions to make autonomous vehicles a reality, presenting their challenges and endeavors. The major contribution of this book is to provide a bundle of AI solutions for driverless technology that can offer a safe, clean, and more convenient riskless mode of transportation.


Introduction to Self-Driving Vehicle Technology

Introduction to Self-Driving Vehicle Technology

Author: Hanky Sjafrie

Publisher: CRC Press

Published: 2019-11-27

Total Pages: 255

ISBN-13: 1000711773

DOWNLOAD EBOOK

This book aims to teach the core concepts that make Self-driving vehicles (SDVs) possible. It is aimed at people who want to get their teeth into self-driving vehicle technology, by providing genuine technical insights where other books just skim the surface. The book tackles everything from sensors and perception to functional safety and cybersecurity. It also passes on some practical know-how and discusses concrete SDV applications, along with a discussion of where this technology is heading. It will serve as a good starting point for software developers or professional engineers who are eager to pursue a career in this exciting field and want to learn more about the basics of SDV algorithms. Likewise, academic researchers, technology enthusiasts, and journalists will also find the book useful. Key Features: Offers a comprehensive technological walk-through of what really matters in SDV development: from hardware, software, to functional safety and cybersecurity Written by an active practitioner with extensive experience in series development and research in the fields of Advanced Driver Assistance Systems (ADAS) and Autonomous Driving Covers theoretical fundamentals of state-of-the-art SLAM, multi-sensor data fusion, and other SDV algorithms. Includes practical information and hands-on material with Robot Operating System (ROS) and Open Source Car Control (OSCC). Provides an overview of the strategies, trends, and applications which companies are pursuing in this field at present as well as other technical insights from the industry.


Autonomous Vehicle Technology

Autonomous Vehicle Technology

Author: James M. Anderson

Publisher: Rand Corporation

Published: 2014-01-10

Total Pages: 215

ISBN-13: 0833084372

DOWNLOAD EBOOK

The automotive industry appears close to substantial change engendered by “self-driving” technologies. This technology offers the possibility of significant benefits to social welfare—saving lives; reducing crashes, congestion, fuel consumption, and pollution; increasing mobility for the disabled; and ultimately improving land use. This report is intended as a guide for state and federal policymakers on the many issues that this technology raises.


The Driver in the Driverless Car

The Driver in the Driverless Car

Author: Vivek Wadhwa

Publisher: Berrett-Koehler Publishers

Published: 2017-04-03

Total Pages: 205

ISBN-13: 1626569738

DOWNLOAD EBOOK

A computer beats the reigning human champion of Go, a game harder than chess. Another is composing classical music. Labs are creating life-forms from synthetic DNA. A doctor designs an artificial trachea, uses a 3D printer to produce it, and implants it and saves a child's life. Astonishing technological advances like these are arriving in increasing numbers. Scholar and entrepreneur Vivek Wadhwa uses this book to alert us to dozens of them and raise important questions about what they may mean for us. Breakthroughs such as personalized genomics, self-driving vehicles, drones, and artificial intelligence could make our lives healthier, safer, and easier. But the same technologies raise the specter of a frightening, alienating future: eugenics, a jobless economy, complete loss of privacy, and ever-worsening economic inequality. As Wadhwa puts it, our choices will determine if our future is Star Trek or Mad Max. Wadhwa offers us three questions to ask about every emerging technology: Does it have the potential to benefit everyone equally? What are its risks and rewards? And does it promote autonomy or dependence? Looking at a broad array of advances in this light, he emphasizes that the future is up to us to create—that even if our hands are not on the wheel, we will decide the driverless car's destination.


Autonomous Vehicles, Volume 1

Autonomous Vehicles, Volume 1

Author: Romil Rawat

Publisher: John Wiley & Sons

Published: 2022-11-30

Total Pages: 324

ISBN-13: 1119871964

DOWNLOAD EBOOK

AUTONOMOUS VEHICLES Addressing the current challenges, approaches and applications relating to autonomous vehicles, this groundbreaking new volume presents the research and techniques in this growing area, using Internet of Things (IoT), Machine Learning (ML), Deep Learning, and Artificial Intelligence (AI). This book provides and addresses the current challenges, approaches, and applications relating to autonomous vehicles, using Internet of Things (IoT), machine learning, deep learning, and Artificial Intelligence (AI) techniques. Several self-driving or autonomous (“driverless”) cars, trucks, and drones incorporate a variety of IoT devices and sensing technologies such as sensors, gyroscopes, cloud computing, and fog layer, allowing the vehicles to sense, process, and maintain massive amounts of data on traffic, routes, suitable times to travel, potholes, sharp turns, and robots for pipe inspection in the construction and mining industries. Few books are available on the practical applications of unmanned aerial vehicles (UAVs) and autonomous vehicles from a multidisciplinary approach. Further, the available books only cover a few applications and designs in a very limited scope. This new, groundbreaking volume covers real-life applications, business modeling, issues, and solutions that the engineer or industry professional faces every day that can be transformed using intelligent systems design of autonomous systems. Whether for the student, veteran engineer, or another industry professional, this book, and its companion volume, are must-haves for any library.


Applied Deep Learning and Computer Vision for Self-Driving Cars

Applied Deep Learning and Computer Vision for Self-Driving Cars

Author: Sumit Ranjan

Publisher: Packt Publishing Ltd

Published: 2020-08-14

Total Pages: 320

ISBN-13: 1838647023

DOWNLOAD EBOOK

Explore self-driving car technology using deep learning and artificial intelligence techniques and libraries such as TensorFlow, Keras, and OpenCV Key FeaturesBuild and train powerful neural network models to build an autonomous carImplement computer vision, deep learning, and AI techniques to create automotive algorithmsOvercome the challenges faced while automating different aspects of driving using modern Python libraries and architecturesBook Description Thanks to a number of recent breakthroughs, self-driving car technology is now an emerging subject in the field of artificial intelligence and has shifted data scientists' focus to building autonomous cars that will transform the automotive industry. This book is a comprehensive guide to use deep learning and computer vision techniques to develop autonomous cars. Starting with the basics of self-driving cars (SDCs), this book will take you through the deep neural network techniques required to get up and running with building your autonomous vehicle. Once you are comfortable with the basics, you'll delve into advanced computer vision techniques and learn how to use deep learning methods to perform a variety of computer vision tasks such as finding lane lines, improving image classification, and so on. You will explore the basic structure and working of a semantic segmentation model and get to grips with detecting cars using semantic segmentation. The book also covers advanced applications such as behavior-cloning and vehicle detection using OpenCV, transfer learning, and deep learning methodologies to train SDCs to mimic human driving. By the end of this book, you'll have learned how to implement a variety of neural networks to develop your own autonomous vehicle using modern Python libraries. What you will learnImplement deep neural network from scratch using the Keras libraryUnderstand the importance of deep learning in self-driving carsGet to grips with feature extraction techniques in image processing using the OpenCV libraryDesign a software pipeline that detects lane lines in videosImplement a convolutional neural network (CNN) image classifier for traffic signal signsTrain and test neural networks for behavioral-cloning by driving a car in a virtual simulatorDiscover various state-of-the-art semantic segmentation and object detection architecturesWho this book is for If you are a deep learning engineer, AI researcher, or anyone looking to implement deep learning and computer vision techniques to build self-driving blueprint solutions, this book is for you. Anyone who wants to learn how various automotive-related algorithms are built, will also find this book useful. Python programming experience, along with a basic understanding of deep learning, is necessary to get the most of this book.