Automorphisms of Manifolds and Algebraic $K$-Theory: Part III

Automorphisms of Manifolds and Algebraic $K$-Theory: Part III

Author: Michael S. Weiss

Publisher: American Mathematical Soc.

Published: 2014-08-12

Total Pages: 122

ISBN-13: 147040981X

DOWNLOAD EBOOK

The structure space of a closed topological -manifold classifies bundles whose fibers are closed -manifolds equipped with a homotopy equivalence to . The authors construct a highly connected map from to a concoction of algebraic -theory and algebraic -theory spaces associated with . The construction refines the well-known surgery theoretic analysis of the block structure space of in terms of -theory.


Surveys on Surgery Theory

Surveys on Surgery Theory

Author: Sylvain E. Cappell

Publisher: Princeton University Press

Published: 2000-01-10

Total Pages: 452

ISBN-13: 9780691049380

DOWNLOAD EBOOK

Surgery theory, the basis for the classification theory of manifolds, is now about forty years old. There have been some extraordinary accomplishments in that time, which have led to enormously varied interactions with algebra, analysis, and geometry. Workers in many of these areas have often lamented the lack of a single source that surveys surgery theory and its applications. Indeed, no one person could write such a survey. The sixtieth birthday of C. T. C. Wall, one of the leaders of the founding generation of surgery theory, provided an opportunity to rectify the situation and produce a comprehensive book on the subject. Experts have written state-of-the-art reports that will be of broad interest to all those interested in topology, not only graduate students and mathematicians, but mathematical physicists as well. Contributors include J. Milnor, S. Novikov, W. Browder, T. Lance, E. Brown, M. Kreck, J. Klein, M. Davis, J. Davis, I. Hambleton, L. Taylor, C. Stark, E. Pedersen, W. Mio, J. Levine, K. Orr, J. Roe, J. Milgram, and C. Thomas.


A Homology Theory for Smale Spaces

A Homology Theory for Smale Spaces

Author: Ian F. Putnam

Publisher: American Mathematical Soc.

Published: 2014-09-29

Total Pages: 136

ISBN-13: 1470409097

DOWNLOAD EBOOK

The author develops a homology theory for Smale spaces, which include the basics sets for an Axiom A diffeomorphism. It is based on two ingredients. The first is an improved version of Bowen's result that every such system is the image of a shift of finite type under a finite-to-one factor map. The second is Krieger's dimension group invariant for shifts of finite type. He proves a Lefschetz formula which relates the number of periodic points of the system for a given period to trace data from the action of the dynamics on the homology groups. The existence of such a theory was proposed by Bowen in the 1970s.


Irreducible Almost Simple Subgroups of Classical Algebraic Groups

Irreducible Almost Simple Subgroups of Classical Algebraic Groups

Author: Timothy C. Burness

Publisher: American Mathematical Soc.

Published: 2015-06-26

Total Pages: 122

ISBN-13: 147041046X

DOWNLOAD EBOOK

Let be a simple classical algebraic group over an algebraically closed field of characteristic with natural module . Let be a closed subgroup of and let be a nontrivial -restricted irreducible tensor indecomposable rational -module such that the restriction of to is irreducible. In this paper the authors classify the triples of this form, where and is a disconnected almost simple positive-dimensional closed subgroup of acting irreducibly on . Moreover, by combining this result with earlier work, they complete the classification of the irreducible triples where is a simple algebraic group over , and is a maximal closed subgroup of positive dimension.


Level One Algebraic Cusp Forms of Classical Groups of Small Rank

Level One Algebraic Cusp Forms of Classical Groups of Small Rank

Author: Gaëtan Chenevier

Publisher: American Mathematical Soc.

Published: 2015-08-21

Total Pages: 134

ISBN-13: 147041094X

DOWNLOAD EBOOK

The authors determine the number of level 1, polarized, algebraic regular, cuspidal automorphic representations of GLn over Q of any given infinitesimal character, for essentially all n≤8. For this, they compute the dimensions of spaces of level 1 automorphic forms for certain semisimple Z-forms of the compact groups SO7, SO8, SO9 (and G2) and determine Arthur's endoscopic partition of these spaces in all cases. They also give applications to the 121 even lattices of rank 25 and determinant 2 found by Borcherds, to level one self-dual automorphic representations of GLn with trivial infinitesimal character, and to vector valued Siegel modular forms of genus 3. A part of the authors' results are conditional to certain expected results in the theory of twisted endoscopy.


A Geometric Theory for Hypergraph Matching

A Geometric Theory for Hypergraph Matching

Author: Peter Keevash

Publisher: American Mathematical Soc.

Published: 2014-12-20

Total Pages: 108

ISBN-13: 1470409658

DOWNLOAD EBOOK

The authors develop a theory for the existence of perfect matchings in hypergraphs under quite general conditions. Informally speaking, the obstructions to perfect matchings are geometric, and are of two distinct types: `space barriers' from convex geometry, and `divisibility barriers' from arithmetic lattice-based constructions. To formulate precise results, they introduce the setting of simplicial complexes with minimum degree sequences, which is a generalisation of the usual minimum degree condition. They determine the essentially best possible minimum degree sequence for finding an almost perfect matching. Furthermore, their main result establishes the stability property: under the same degree assumption, if there is no perfect matching then there must be a space or divisibility barrier. This allows the use of the stability method in proving exact results. Besides recovering previous results, the authors apply our theory to the solution of two open problems on hypergraph packings: the minimum degree threshold for packing tetrahedra in -graphs, and Fischer's conjecture on a multipartite form of the Hajnal-Szemerédi Theorem. Here they prove the exact result for tetrahedra and the asymptotic result for Fischer's conjecture; since the exact result for the latter is technical they defer it to a subsequent paper.


Local Entropy Theory of a Random Dynamical System

Local Entropy Theory of a Random Dynamical System

Author: Anthony H. Dooley

Publisher: American Mathematical Soc.

Published: 2014-12-20

Total Pages: 118

ISBN-13: 1470410559

DOWNLOAD EBOOK

In this paper the authors extend the notion of a continuous bundle random dynamical system to the setting where the action of R or N is replaced by the action of an infinite countable discrete amenable group. Given such a system, and a monotone sub-additive invariant family of random continuous functions, they introduce the concept of local fiber topological pressure and establish an associated variational principle, relating it to measure-theoretic entropy. They also discuss some variants of this variational principle. The authors introduce both topological and measure-theoretic entropy tuples for continuous bundle random dynamical systems, and apply variational principles to obtain a relationship between these of entropy tuples. Finally, they give applications of these results to general topological dynamical systems, recovering and extending many recent results in local entropy theory.


The Optimal Version of Hua's Fundamental Theorem of Geometry of Rectangular Matrices

The Optimal Version of Hua's Fundamental Theorem of Geometry of Rectangular Matrices

Author: Peter Šemrl

Publisher: American Mathematical Soc.

Published: 2014-09-29

Total Pages: 86

ISBN-13: 0821898450

DOWNLOAD EBOOK

Hua's fundamental theorem of geometry of matrices describes the general form of bijective maps on the space of all m\times n matrices over a division ring \mathbb{D} which preserve adjacency in both directions. Motivated by several applications the author studies a long standing open problem of possible improvements. There are three natural questions. Can we replace the assumption of preserving adjacency in both directions by the weaker assumption of preserving adjacency in one direction only and still get the same conclusion? Can we relax the bijectivity assumption? Can we obtain an analogous result for maps acting between the spaces of rectangular matrices of different sizes? A division ring is said to be EAS if it is not isomorphic to any proper subring. For matrices over EAS division rings the author solves all three problems simultaneously, thus obtaining the optimal version of Hua's theorem. In the case of general division rings he gets such an optimal result only for square matrices and gives examples showing that it cannot be extended to the non-square case.


Polynomial Approximation on Polytopes

Polynomial Approximation on Polytopes

Author: Vilmos Totik

Publisher: American Mathematical Soc.

Published: 2014-09-29

Total Pages: 124

ISBN-13: 1470416662

DOWNLOAD EBOOK

Polynomial approximation on convex polytopes in is considered in uniform and -norms. For an appropriate modulus of smoothness matching direct and converse estimates are proven. In the -case so called strong direct and converse results are also verified. The equivalence of the moduli of smoothness with an appropriate -functional follows as a consequence. The results solve a problem that was left open since the mid 1980s when some of the present findings were established for special, so-called simple polytopes.


The Grothendieck Inequality Revisited

The Grothendieck Inequality Revisited

Author: Ron Blei

Publisher: American Mathematical Soc.

Published: 2014-09-29

Total Pages: 102

ISBN-13: 0821898558

DOWNLOAD EBOOK

The classical Grothendieck inequality is viewed as a statement about representations of functions of two variables over discrete domains by integrals of two-fold products of functions of one variable. An analogous statement is proved, concerning continuous functions of two variables over general topological domains. The main result is the construction of a continuous map $\Phi$ from $l^2(A)$ into $L^2(\Omega_A, \mathbb{P}_A)$, where $A$ is a set, $\Omega_A = \{-1,1\}^A$, and $\mathbb{P}_A$ is the uniform probability measure on $\Omega_A$.