Automorphic Representations, L-Functions and Applications: Progress and Prospects

Automorphic Representations, L-Functions and Applications: Progress and Prospects

Author: James W. Cogdell

Publisher: Walter de Gruyter

Published: 2011-06-24

Total Pages: 441

ISBN-13: 3110892707

DOWNLOAD EBOOK

This volume is the proceedings of the conference on Automorphic Representations, L-functions and Applications: Progress and Prospects, held at the Department of Mathematics of The Ohio State University, March 27–30, 2003, in honor of the 60th birthday of Steve Rallis. The theory of automorphic representations, automorphic L-functions and their applications to arithmetic continues to be an area of vigorous and fruitful research. The contributed papers in this volume represent many of the most recent developments and directions, including Rankin–Selberg L-functions (Bump, Ginzburg–Jiang–Rallis, Lapid–Rallis) the relative trace formula (Jacquet, Mao–Rallis) automorphic representations (Gan–Gurevich, Ginzburg–Rallis–Soudry) representation theory of p-adic groups (Baruch, Kudla–Rallis, Mœglin, Cogdell–Piatetski-Shapiro–Shahidi) p-adic methods (Harris–Li–Skinner, Vigneras), and arithmetic applications (Chinta–Friedberg–Hoffstein). The survey articles by Bump, on the Rankin–Selberg method, and by Jacquet, on the relative trace formula, should be particularly useful as an introduction to the key ideas about these important topics. This volume should be of interest both to researchers and students in the area of automorphic representations, as well as to mathematicians in other areas interested in having an overview of current developments in this important field.


Automorphic Forms and $L$-functions I

Automorphic Forms and $L$-functions I

Author: David Ginzburg

Publisher: American Mathematical Soc.

Published: 2009

Total Pages: 315

ISBN-13: 0821847066

DOWNLOAD EBOOK

Includes articles that represent global aspects of automorphic forms. This book covers topics such as: the trace formula; functoriality; representations of reductive groups over local fields; the relative trace formula and periods of automorphic forms; Rankin - Selberg convolutions and L-functions; and, p-adic L-functions.


On Certain $L$-Functions

On Certain $L$-Functions

Author: James Arthur

Publisher: American Mathematical Soc.

Published: 2011

Total Pages: 658

ISBN-13: 0821852043

DOWNLOAD EBOOK

Illuminate various areas of the study of geometric, analytic, and number theoretic aspects of automorphic forms and their $L$-functions, and both local and global theory are addressed. Topics discussed in the articles include Langlands functoriality, the Rankin-Selberg method, the Langlands-Shahidi method, motivic Galois groups, Shimura varieties, orbital integrals, representations of $p$-adic groups, Plancherel formula and its consequences, and the Gross-Prasad conjecture.


Multiple Dirichlet Series, L-functions and Automorphic Forms

Multiple Dirichlet Series, L-functions and Automorphic Forms

Author: Daniel Bump

Publisher: Springer

Published: 2012-07-09

Total Pages: 367

ISBN-13: 0817683348

DOWNLOAD EBOOK

Multiple Dirichlet Series, L-functions and Automorphic Forms gives the latest advances in the rapidly developing subject of Multiple Dirichlet Series, an area with origins in the theory of automorphic forms that exhibits surprising and deep connections to crystal graphs and mathematical physics. As such, it represents a new way in which areas including number theory, combinatorics, statistical mechanics, and quantum groups are seen to fit together. The volume also includes papers on automorphic forms and L-functions and related number-theoretic topics. This volume will be a valuable resource for graduate students and researchers in number theory, combinatorics, representation theory, mathematical physics, and special functions. Contributors: J. Beineke, B. Brubaker, D. Bump, G. Chinta, G. Cornelissen, C.A. Diaconu, S. Frechette, S. Friedberg, P. Garrett, D. Goldfeld, P.E. Gunnells, B. Heim, J. Hundley, D. Ivanov, Y. Komori, A.V. Kontorovich, O. Lorscheid, K. Matsumoto, P.J. McNamara, S.J. Patterson, M. Suzuki, H. Tsumura.


The Descent Map from Automorphic Representations of GL(n) to Classical Groups

The Descent Map from Automorphic Representations of GL(n) to Classical Groups

Author: David Ginzburg

Publisher: World Scientific

Published: 2011

Total Pages: 350

ISBN-13: 9814304980

DOWNLOAD EBOOK

This book introduces the method of automorphic descent, providing an explicit inverse map to the (weak) Langlands functorial lift from generic, cuspidal representations on classical groups to general linear groups. The essence of this method is the study of certain Fourier coefficients of the Gelfand?Graev type, or of the Fourier?Jacobi type to certain residual Eisenstein series. An account of this automorphic descent, with complete, detailed proofs, leads to a thorough understanding of important ideas and techniques. The book will be of interest to graduate students and mathematicians, who specialize in automorphic forms and in representation theory of reductive groups over local fields. Relatively self-contained, the content of some of the chapters can serve as topics for graduate students seminars.


Eisenstein Series and Applications

Eisenstein Series and Applications

Author: Wee Teck Gan

Publisher: Springer Science & Business Media

Published: 2007-12-22

Total Pages: 317

ISBN-13: 0817646396

DOWNLOAD EBOOK

Eisenstein series are an essential ingredient in the spectral theory of automorphic forms and an important tool in the theory of L-functions. They have also been exploited extensively by number theorists for many arithmetic purposes. Bringing together contributions from areas which do not usually interact with each other, this volume introduces diverse users of Eisenstein series to a variety of important applications. With this juxtaposition of perspectives, the reader obtains deeper insights into the arithmetic of Eisenstein series. The central theme of the exposition focuses on the common structural properties of Eisenstein series occurring in many related applications.


Advances in the Theory of Automorphic Forms and Their $L$-functions

Advances in the Theory of Automorphic Forms and Their $L$-functions

Author: Dihua Jiang

Publisher: American Mathematical Soc.

Published: 2016-04-29

Total Pages: 386

ISBN-13: 147041709X

DOWNLOAD EBOOK

This volume contains the proceedings of the workshop on “Advances in the Theory of Automorphic Forms and Their L-functions” held in honor of James Cogdell's 60th birthday, held from October 16–25, 2013, at the Erwin Schrödinger Institute (ESI) at the University of Vienna. The workshop and the papers contributed to this volume circle around such topics as the theory of automorphic forms and their L-functions, geometry and number theory, covering some of the recent approaches and advances to these subjects. Specifically, the papers cover aspects of representation theory of p-adic groups, classification of automorphic representations through their Fourier coefficients and their liftings, L-functions for classical groups, special values of L-functions, Howe duality, subconvexity for L-functions, Kloosterman integrals, arithmetic geometry and cohomology of arithmetic groups, and other important problems on L-functions, nodal sets and geometry.


Representation Theory, Number Theory, and Invariant Theory

Representation Theory, Number Theory, and Invariant Theory

Author: Jim Cogdell

Publisher: Birkhäuser

Published: 2017-10-19

Total Pages: 630

ISBN-13: 3319597280

DOWNLOAD EBOOK

This book contains selected papers based on talks given at the "Representation Theory, Number Theory, and Invariant Theory" conference held at Yale University from June 1 to June 5, 2015. The meeting and this resulting volume are in honor of Professor Roger Howe, on the occasion of his 70th birthday, whose work and insights have been deeply influential in the development of these fields. The speakers who contributed to this work include Roger Howe's doctoral students, Roger Howe himself, and other world renowned mathematicians. Topics covered include automorphic forms, invariant theory, representation theory of reductive groups over local fields, and related subjects.


Multiple Dirichlet Series, Automorphic Forms, and Analytic Number Theory

Multiple Dirichlet Series, Automorphic Forms, and Analytic Number Theory

Author: Solomon Friedberg

Publisher: American Mathematical Soc.

Published: 2006

Total Pages: 320

ISBN-13: 0821839632

DOWNLOAD EBOOK

Multiple Dirichlet series are Dirichlet series in several complex variables. A multiple Dirichlet series is said to be perfect if it satisfies a finite group of functional equations and has meromorphic continuation everywhere. The earliest examples came from Mellin transforms of metaplectic Eisenstein series and have been intensively studied over the last twenty years. More recently, many other examples have been discovered and it appears that all the classical theorems on moments of $L$-functions as well as the conjectures (such as those predicted by random matrix theory) can now be obtained via the theory of multiple Dirichlet series. Furthermore, new results, not obtainable by other methods, are just coming to light. This volume offers an account of some of the major research to date and the opportunities for the future. It includes an exposition of the main results in the theory of multiple Dirichlet series, and papers on moments of zeta- and $L$-functions, on new examples of multiple Dirichlet


Harmonic Analysis, Group Representations, Automorphic Forms, and Invariant Theory

Harmonic Analysis, Group Representations, Automorphic Forms, and Invariant Theory

Author: Jian-Shu Li

Publisher: World Scientific

Published: 2007

Total Pages: 446

ISBN-13: 981277078X

DOWNLOAD EBOOK

This volume carries the same title as that of an international conference held at the National University of Singapore, 9-11 January 2006 on the occasion of Roger E. Howe's 60th birthday. Authored by leading members of the Lie theory community, these contributions, expanded from invited lectures given at the conference, are a fitting tribute to the originality, depth and influence of Howe's mathematical work. The range and diversity of the topics will appeal to a broad audience of research mathematicians and graduate students interested in symmetry and its profound applications.