Automorphic Forms

Automorphic Forms

Author: Anton Deitmar

Publisher: Springer Science & Business Media

Published: 2012-08-29

Total Pages: 255

ISBN-13: 144714435X

DOWNLOAD EBOOK

Automorphic forms are an important complex analytic tool in number theory and modern arithmetic geometry. They played for example a vital role in Andrew Wiles's proof of Fermat's Last Theorem. This text provides a concise introduction to the world of automorphic forms using two approaches: the classic elementary theory and the modern point of view of adeles and representation theory. The reader will learn the important aims and results of the theory by focussing on its essential aspects and restricting it to the 'base field' of rational numbers. Students interested for example in arithmetic geometry or number theory will find that this book provides an optimal and easily accessible introduction into this topic.


Eisenstein Series and Automorphic Representations

Eisenstein Series and Automorphic Representations

Author: Philipp Fleig

Publisher: Cambridge Studies in Advanced

Published: 2018-07-05

Total Pages: 587

ISBN-13: 1107189926

DOWNLOAD EBOOK

Detailed exposition of automorphic representations and their relation to string theory, for mathematicians and theoretical physicists.


Automorphic Forms and Representations

Automorphic Forms and Representations

Author: Daniel Bump

Publisher: Cambridge University Press

Published: 1998-11-28

Total Pages: 592

ISBN-13: 9780521658188

DOWNLOAD EBOOK

This book takes advanced graduate students from the foundations to topics on the research frontier.


Families of Automorphic Forms and the Trace Formula

Families of Automorphic Forms and the Trace Formula

Author: Werner Müller

Publisher: Springer

Published: 2016-09-20

Total Pages: 581

ISBN-13: 3319414240

DOWNLOAD EBOOK

Featuring the work of twenty-three internationally-recognized experts, this volume explores the trace formula, spectra of locally symmetric spaces, p-adic families, and other recent techniques from harmonic analysis and representation theory. Each peer-reviewed submission in this volume, based on the Simons Foundation symposium on families of automorphic forms and the trace formula held in Puerto Rico in January-February 2014, is the product of intensive research collaboration by the participants over the course of the seven-day workshop. The goal of each session in the symposium was to bring together researchers with diverse specialties in order to identify key difficulties as well as fruitful approaches being explored in the field. The respective themes were counting cohomological forms, p-adic trace formulas, Hecke fields, slopes of modular forms, and orbital integrals.


Automorphic Forms and the Langlands Program

Automorphic Forms and the Langlands Program

Author: Lizhen Ji

Publisher: International Press of Boston

Published: 2010

Total Pages: 0

ISBN-13: 9781571461414

DOWNLOAD EBOOK

Consists of expanded lecture notes from a 2007 international conference in Guangzhou, China, at which several leading experts in number theory presented introductions to, and surveys of, many aspects of automorphic forms and the Langlands program.


Representation Theory and Automorphic Forms

Representation Theory and Automorphic Forms

Author: T. N. Bailey

Publisher: American Mathematical Soc.

Published: 1997

Total Pages: 490

ISBN-13: 0821806092

DOWNLOAD EBOOK

The lectures from a course in the representation theory of semi- simple groups, automorphic forms, and the relations between them. The purpose is to help analysts make systematic use of Lie groups in work on harmonic analysis, differential equations, and mathematical physics; and to provide number theorists with the representation-theoretic input to Wiles's proof of Fermat's Last Theorem. Begins with an introductory treatment of structure theory and ends with the current status of functionality. Annotation copyrighted by Book News, Inc., Portland, OR


Automorphic Forms and Galois Representations: Volume 1

Automorphic Forms and Galois Representations: Volume 1

Author: Fred Diamond

Publisher: Cambridge University Press

Published: 2014-10-16

Total Pages: 385

ISBN-13: 1316062333

DOWNLOAD EBOOK

Automorphic forms and Galois representations have played a central role in the development of modern number theory, with the former coming to prominence via the celebrated Langlands program and Wiles' proof of Fermat's Last Theorem. This two-volume collection arose from the 94th LMS-EPSRC Durham Symposium on 'Automorphic Forms and Galois Representations' in July 2011, the aim of which was to explore recent developments in this area. The expository articles and research papers across the two volumes reflect recent interest in p-adic methods in number theory and representation theory, as well as recent progress on topics from anabelian geometry to p-adic Hodge theory and the Langlands program. The topics covered in volume one include the Shafarevich Conjecture, effective local Langlands correspondence, p-adic L-functions, the fundamental lemma, and other topics of contemporary interest.