Automation Devices, Inc. V. Smalenberger, Jr
Author:
Publisher:
Published: 1965
Total Pages: 54
ISBN-13:
DOWNLOAD EBOOKRead and Download eBook Full
Author:
Publisher:
Published: 1965
Total Pages: 54
ISBN-13:
DOWNLOAD EBOOKAuthor:
Publisher:
Published: 1965
Total Pages: 152
ISBN-13:
DOWNLOAD EBOOKAuthor: United States. Supreme Court
Publisher:
Published: 1966
Total Pages: 848
ISBN-13:
DOWNLOAD EBOOKAuthor: United States. Supreme Court
Publisher:
Published: 1965
Total Pages: 1176
ISBN-13:
DOWNLOAD EBOOKAuthor: United States. Supreme Court
Publisher:
Published: 1966
Total Pages: 1356
ISBN-13:
DOWNLOAD EBOOKFirst series, books 1-43, includes "Notes on U.S. reports" by Walter Malins Rose.
Author:
Publisher:
Published: 1965
Total Pages: 872
ISBN-13:
DOWNLOAD EBOOKAuthor: Carl Edward Rasmussen
Publisher: MIT Press
Published: 2005-11-23
Total Pages: 266
ISBN-13: 026218253X
DOWNLOAD EBOOKA comprehensive and self-contained introduction to Gaussian processes, which provide a principled, practical, probabilistic approach to learning in kernel machines. Gaussian processes (GPs) provide a principled, practical, probabilistic approach to learning in kernel machines. GPs have received increased attention in the machine-learning community over the past decade, and this book provides a long-needed systematic and unified treatment of theoretical and practical aspects of GPs in machine learning. The treatment is comprehensive and self-contained, targeted at researchers and students in machine learning and applied statistics. The book deals with the supervised-learning problem for both regression and classification, and includes detailed algorithms. A wide variety of covariance (kernel) functions are presented and their properties discussed. Model selection is discussed both from a Bayesian and a classical perspective. Many connections to other well-known techniques from machine learning and statistics are discussed, including support-vector machines, neural networks, splines, regularization networks, relevance vector machines and others. Theoretical issues including learning curves and the PAC-Bayesian framework are treated, and several approximation methods for learning with large datasets are discussed. The book contains illustrative examples and exercises, and code and datasets are available on the Web. Appendixes provide mathematical background and a discussion of Gaussian Markov processes.
Author:
Publisher:
Published: 1973
Total Pages: 1368
ISBN-13:
DOWNLOAD EBOOK