This book surveys the history of automatic vehicle guidance based on the processing of visual information, starting from the very first projects worldwide up to the latest developments. It also presents the ARGO prototype vehicle, developed at the University of Parma (Italy), and describes its equipment, setup, and performance. ARGO has been equipped with cameras and processing systems to drive autonomously in real traffic conditions. The complete system has been tested on public roads, during a tour in which ARGO drove itself along the Italian highway network for more than 2000 km. A detailed analysis of this trip is also included.
The automotive industry appears close to substantial change engendered by “self-driving” technologies. This technology offers the possibility of significant benefits to social welfare—saving lives; reducing crashes, congestion, fuel consumption, and pollution; increasing mobility for the disabled; and ultimately improving land use. This report is intended as a guide for state and federal policymakers on the many issues that this technology raises.
This book takes a look at fully automated, autonomous vehicles and discusses many open questions: How can autonomous vehicles be integrated into the current transportation system with diverse users and human drivers? Where do automated vehicles fall under current legal frameworks? What risks are associated with automation and how will society respond to these risks? How will the marketplace react to automated vehicles and what changes may be necessary for companies? Experts from Germany and the United States define key societal, engineering, and mobility issues related to the automation of vehicles. They discuss the decisions programmers of automated vehicles must make to enable vehicles to perceive their environment, interact with other road users, and choose actions that may have ethical consequences. The authors further identify expectations and concerns that will form the basis for individual and societal acceptance of autonomous driving. While the safety benefits of such vehicles are tremendous, the authors demonstrate that these benefits will only be achieved if vehicles have an appropriate safety concept at the heart of their design. Realizing the potential of automated vehicles to reorganize traffic and transform mobility of people and goods requires similar care in the design of vehicles and networks. By covering all of these topics, the book aims to provide a current, comprehensive, and scientifically sound treatment of the emerging field of “autonomous driving".
This report presents a framework for measuring safety in automated vehicles (AVs): how to define safety for AVs, how to measure safety for AVs, and how to communicate what is learned or understood about AVs.
This primer is directed at experts and practitioners in intralogistics who are concerned with optimizing material flows. The presentation is comprehensive covering both, practical and theoretical aspects with a moderate degree of specialization, using clear and concise language. Areas of operation as well as technical standards of all relevant components and functions are described. Recent developments in technology and in the markets are taken into account. The goal of this book is to further stronger use of automated guided transport systems and the enhancement of their future performance.
Shared mobility is gaining increasing attention in private and public sectors. Serving as a source of information on how best to shape shared vehicle systems of the future, this book contributes knowledge on key facets of shared mobility. It includes shared vehicle systems as well as shared automated vehicle systems.
The main topics of this book include advanced control, cognitive data processing, high performance computing, functional safety, and comprehensive validation. These topics are seen as technological bricks to drive forward automated driving. The current state of the art of automated vehicle research, development and innovation is given. The book also addresses industry-driven roadmaps for major new technology advances as well as collaborative European initiatives supporting the evolvement of automated driving. Various examples highlight the state of development of automated driving as well as the way forward. The book will be of interest to academics and researchers within engineering, graduate students, automotive engineers at OEMs and suppliers, ICT and software engineers, managers, and other decision-makers.
Front Cover -- About Island Press -- Subscribe -- Title Page -- Copyright Page -- Contents -- Preface -- Acknowledgments -- 1. Will the Transportation Revolutions Improve Our Lives-- or Make Them Worse? -- 2. Electric Vehicles: Approaching the Tipping Point -- 3. Shared Mobility: The Potential of Ridehailing and Pooling -- 4. Vehicle Automation: Our Best Shot at a Transportation Do-Over? -- 5. Upgrading Transit for the Twenty-First Century -- 6. Bridging the Gap between Mobility Haves and Have-Nots -- 7. Remaking the Auto Industry -- 8. The Dark Horse: Will China Win the Electric, Automated, Shared Mobility Race? -- Epilogue -- Notes -- About the Contributors -- Index -- IP Board of Directors
"A Vision for Safety replaces the Federal Automated Vehicle Policy released in 2016. This updated policy framework offers a path forward for the safe deployment of automated vehicles by: encouraging new entrants and ideas that deliver safer vehicles; making Department regulatory processes more nimble to help match the pace of private sector innovation; and supporting industry innovation and encouraging open communication with the public and with stakeholders."--Introductory message.
Over the past century, mechanization has been an important means for optimizing resource utilization, improving worker health and safety and reducing labor requirements in farming while increasing productivity and quality of 4F (Food, Fuel, Fiber, Feed). Recognizing this contribution, agricultural mechanization was considered as one of the top ten engineering achievements of 20th century by the National Academy of Engineering. Accordingly farming communities have adopted increasing level of automation and robotics to further improve the precision management of crops (including input resources), increase productivity and reduce farm labor beyond what has been possible with conventional mechanization technologies. It is more important than ever to continue to develop and adopt novel automation and robotic solutions into farming so that some of the most complex agricultural tasks, which require huge amount of seasonal labor such as fruit and vegetable harvesting, could be automated while meeting the rapidly increasing need for 4F. In addition, continual innovation in and adoption of agricultural automation and robotic technologies is essential to minimize the use of depleting resources including water, minerals and other chemicals so that sufficient amount of safe and healthy food can be produced for current generation while not compromising the potential for the future generation. This book aims at presenting the fundamental principles of various aspects of automation and robotics as they relate to production agriculture (the branch of agriculture dealing with farming operations from field preparation to seeding, to harvesting and field logistics). The building blocks of agricultural automation and robotics that are discussed in the book include sensing and machine vision, control, guidance, manipulation and end-effector technologies. The fundamentals and operating principles of these technologies are explained with examples from cutting-edge research and development currently going on around the word. This book brings together scientists, engineers, students and professionals working in these and related technologies to present their latest examples of agricultural automation and robotics research, innovation and development while explaining the fundamentals of the technology. The book, therefore, benefits those who wish to develop novel agricultural engineering solutions and/or to adopt them in the future. .