Automatic Text Simplification

Automatic Text Simplification

Author: Horacio Saggion

Publisher: Springer Nature

Published: 2022-05-31

Total Pages: 121

ISBN-13: 3031021665

DOWNLOAD EBOOK

Thanks to the availability of texts on the Web in recent years, increased knowledge and information have been made available to broader audiences. However, the way in which a text is written—its vocabulary, its syntax—can be difficult to read and understand for many people, especially those with poor literacy, cognitive or linguistic impairment, or those with limited knowledge of the language of the text. Texts containing uncommon words or long and complicated sentences can be difficult to read and understand by people as well as difficult to analyze by machines. Automatic text simplification is the process of transforming a text into another text which, ideally conveying the same message, will be easier to read and understand by a broader audience. The process usually involves the replacement of difficult or unknown phrases with simpler equivalents and the transformation of long and syntactically complex sentences into shorter and less complex ones. Automatic text simplification, a research topic which started 20 years ago, now has taken on a central role in natural language processing research not only because of the interesting challenges it posesses but also because of its social implications. This book presents past and current research in text simplification, exploring key issues including automatic readability assessment, lexical simplification, and syntactic simplification. It also provides a detailed account of machine learning techniques currently used in simplification, describes full systems designed for specific languages and target audiences, and offers available resources for research and development together with text simplification evaluation techniques.


Text as Data

Text as Data

Author: Justin Grimmer

Publisher: Princeton University Press

Published: 2022-03-29

Total Pages: 360

ISBN-13: 0691207550

DOWNLOAD EBOOK

A guide for using computational text analysis to learn about the social world From social media posts and text messages to digital government documents and archives, researchers are bombarded with a deluge of text reflecting the social world. This textual data gives unprecedented insights into fundamental questions in the social sciences, humanities, and industry. Meanwhile new machine learning tools are rapidly transforming the way science and business are conducted. Text as Data shows how to combine new sources of data, machine learning tools, and social science research design to develop and evaluate new insights. Text as Data is organized around the core tasks in research projects using text—representation, discovery, measurement, prediction, and causal inference. The authors offer a sequential, iterative, and inductive approach to research design. Each research task is presented complete with real-world applications, example methods, and a distinct style of task-focused research. Bridging many divides—computer science and social science, the qualitative and the quantitative, and industry and academia—Text as Data is an ideal resource for anyone wanting to analyze large collections of text in an era when data is abundant and computation is cheap, but the enduring challenges of social science remain. Overview of how to use text as data Research design for a world of data deluge Examples from across the social sciences and industry


Aspects of Automatic Text Analysis

Aspects of Automatic Text Analysis

Author: Alexander Mehler

Publisher: Springer Science & Business Media

Published: 2007

Total Pages: 450

ISBN-13: 3540375201

DOWNLOAD EBOOK

This book presents recent developments in automatic text analysis. Providing an overview of linguistic modeling, it collects contributions of authors from a multidisciplinary area that focus on the topic of automatic text analysis from different perspectives. It includes chapters on cognitive modeling and visual systems modeling, and contributes to the computational linguistic and information theoretical grounding of automatic text analysis.


Text Mining

Text Mining

Author: Taeho Jo

Publisher: Springer

Published: 2018-06-07

Total Pages: 376

ISBN-13: 331991815X

DOWNLOAD EBOOK

This book discusses text mining and different ways this type of data mining can be used to find implicit knowledge from text collections. The author provides the guidelines for implementing text mining systems in Java, as well as concepts and approaches. The book starts by providing detailed text preprocessing techniques and then goes on to provide concepts, the techniques, the implementation, and the evaluation of text categorization. It then goes into more advanced topics including text summarization, text segmentation, topic mapping, and automatic text management.


Computational Linguistics and Intelligent Text Processing

Computational Linguistics and Intelligent Text Processing

Author: Alexander Gelbukh

Publisher: Springer

Published: 2009-02-17

Total Pages: 619

ISBN-13: 3642003826

DOWNLOAD EBOOK

th CICLing 2009 markedthe 10 anniversary of the Annual Conference on Intel- gent Text Processing and Computational Linguistics. The CICLing conferences provide a wide-scope forum for the discussion of the art and craft of natural language processing research as well as the best practices in its applications. This volume contains ?ve invited papers and the regular papers accepted for oral presentation at the conference. The papers accepted for poster presentation were published in a special issue of another journal (see the website for more information). Since 2001, the proceedings of CICLing conferences have been published in Springer’s Lecture Notes in Computer Science series, as volumes 2004, 2276, 2588, 2945, 3406, 3878, 4394, and 4919. This volume has been structured into 12 sections: – Trends and Opportunities – Linguistic Knowledge Representation Formalisms – Corpus Analysis and Lexical Resources – Extraction of Lexical Knowledge – Morphology and Parsing – Semantics – Word Sense Disambiguation – Machine Translation and Multilinguism – Information Extraction and Text Mining – Information Retrieval and Text Comparison – Text Summarization – Applications to the Humanities A total of 167 papers by 392 authors from 40 countries were submitted for evaluation by the International Program Committee, see Tables 1 and 2. This volume contains revised versions of 44 papers, by 120 authors, selected for oral presentation; the acceptance rate was 26. 3%.


Natural Language Processing and Text Mining

Natural Language Processing and Text Mining

Author: Anne Kao

Publisher: Springer Science & Business Media

Published: 2007-03-06

Total Pages: 272

ISBN-13: 1846287545

DOWNLOAD EBOOK

Natural Language Processing and Text Mining not only discusses applications of Natural Language Processing techniques to certain Text Mining tasks, but also the converse, the use of Text Mining to assist NLP. It assembles a diverse views from internationally recognized researchers and emphasizes caveats in the attempt to apply Natural Language Processing to text mining. This state-of-the-art survey is a must-have for advanced students, professionals, and researchers.


Pathways Between Social Science and Computational Social Science

Pathways Between Social Science and Computational Social Science

Author: Tamás Rudas

Publisher: Springer Nature

Published: 2021-01-22

Total Pages: 284

ISBN-13: 3030549364

DOWNLOAD EBOOK

This volume shows that the emergence of computational social science (CSS) is an endogenous response to problems from within the social sciences and not exogeneous. The three parts of the volume address various pathways along which CSS has been developing from and interacting with existing research frameworks. The first part exemplifies how new theoretical models and approaches on which CSS research is based arise from theories of social science. The second part is about methodological advances facilitated by CSS-related techniques. The third part illustrates the contribution of CSS to traditional social science topics, further attesting to the embedded nature of CSS. The expected readership of the volume includes researchers with a traditional social science background who wish to approach CSS, experts in CSS looking for substantive links to more traditional social science theories, methods and topics, and finally, students working in both fields.


Automated Data Collection with R

Automated Data Collection with R

Author: Simon Munzert

Publisher: John Wiley & Sons

Published: 2015-01-20

Total Pages: 474

ISBN-13: 111883481X

DOWNLOAD EBOOK

A hands on guide to web scraping and text mining for both beginners and experienced users of R Introduces fundamental concepts of the main architecture of the web and databases and covers HTTP, HTML, XML, JSON, SQL. Provides basic techniques to query web documents and data sets (XPath and regular expressions). An extensive set of exercises are presented to guide the reader through each technique. Explores both supervised and unsupervised techniques as well as advanced techniques such as data scraping and text management. Case studies are featured throughout along with examples for each technique presented. R code and solutions to exercises featured in the book are provided on a supporting website.