Automatic Text Summarization

Automatic Text Summarization

Author: Juan-Manuel Torres-Moreno

Publisher: John Wiley & Sons

Published: 2014-11-10

Total Pages: 368

ISBN-13: 1848216688

DOWNLOAD EBOOK

Textual information in the form of digital documents quickly accumulates to create huge amounts of data. The majority of these documents are unstructured: it is unrestricted text and has not been organized into traditional databases. Processing documents is therefore a perfunctory task, mostly due to a lack of standards. It has thus become extremely difficult to implement automatic text analysis tasks. Automatic Text Summarization (ATS), by condensing the text while maintaining relevant information, can help to process this ever-increasing, difficult-to-handle, mass of information. This book examines the motivations and different algorithms for ATS. The author presents the recent state of the art before describing the main problems of ATS, as well as the difficulties and solutions provided by the community. The book provides recent advances in ATS, as well as current applications and trends. The approaches are statistical, linguistic and symbolic. Several examples are also included in order to clarify the theoretical concepts.


Automatic Summarization

Automatic Summarization

Author: Inderjeet Mani

Publisher: John Benjamins Publishing

Published: 2001

Total Pages: 304

ISBN-13: 9789027249869

DOWNLOAD EBOOK

With the explosion in the quantity of on-line text and multimedia information in recent years, there has been a renewed interest in automatic summarization. This book provides a systematic introduction to the field, explaining basic definitions, the strategies used by human summarizers, and automatic methods that leverage linguistic and statistical knowledge to produce extracts and abstracts. Drawing from a wealth of research in artificial intelligence, natural language processing, and information retrieval, the book also includes detailed assessments of evaluation methods and new topics such as multi-document and multimedia summarization. Previous automatic summarization books have been either collections of specialized papers, or else authored books with only a chapter or two devoted to the field as a whole. This is the first textbook on the subject, developed based on teaching materials used in two one-semester courses. To further help the student reader, the book includes detailed case studies, accompanied by end-of-chapter reviews and an extensive glossary.Audience: students and researchers, as well as information technology managers, librarians, and anyone else interested in the subject.


Advances in Automatic Text Summarization

Advances in Automatic Text Summarization

Author: Inderjeet Mani

Publisher: MIT Press

Published: 1999

Total Pages: 464

ISBN-13: 9780262133593

DOWNLOAD EBOOK

ntil now there has been no state-of-the-art collection of themost important writings in automatic text summarization. This bookpresents the key developments in the field in an integrated frameworkand suggests future research areas. With the rapid growth of the World Wide Web and electronic information services, information is becoming available on-line at an incredible rate. One result is the oft-decried information overload. No one has time to read everything, yet we often have to make critical decisions based on what we are able to assimilate. The technology of automatic text summarization is becoming indispensable for dealing with this problem. Text summarization is the process of distilling the most important information from a source to produce an abridged version for a particular user or task. Until now there has been no state-of-the-art collection of the most important writings in automatic text summarization. This book presents the key developments in the field in an integrated framework and suggests future research areas. The book is organized into six sections: Classical Approaches, Corpus-Based Approaches, Exploiting Discourse Structure, Knowledge-Rich Approaches, Evaluation Methods, and New Summarization Problem Areas. Contributors D. A. Adams, C. Aone, R. Barzilay, E. Bloedorn, B. Boguraev, R. Brandow, C. Buckley, F. Chen, M. J. Chrzanowski, H. P. Edmundson, M. Elhadad, T. Firmin, R. P. Futrelle, J. Gorlinsky, U. Hahn, E. Hovy, D. Jang, K. Sparck Jones, G. M. Kasper, C. Kennedy, K. Kukich, J. Kupiec, B. Larsen, W. G. Lehnert, C. Lin, H. P. Luhn, I. Mani, D. Marcu, M. Maybury, K. McKeown, A. Merlino, M. Mitra, K. Mitze, M. Moens, A. H. Morris, S. H. Myaeng, M. E. Okurowski, J. Pedersen, J. J. Pollock, D. R. Radev, G. J. Rath, L. F. Rau, U. Reimer, A. Resnick, J. Robin, G. Salton, T. R. Savage, A. Singhal, G. Stein, T. Strzalkowski, S. Teufel, J. Wang, B. Wise, A. Zamora


Automatic Summarization

Automatic Summarization

Author: Ani Nenkova

Publisher: Now Publishers Inc

Published: 2011

Total Pages: 144

ISBN-13: 1601984707

DOWNLOAD EBOOK

Automatic Summarization is a comprehensive overview of research in summarization, including the more traditional efforts in sentence extraction as well as the most novel recent approaches for determining important content, for domain and genre specific summarization and for evaluation of summarization


Automatic Summarization

Automatic Summarization

Author: Inderjeet Mani

Publisher: John Benjamins Publishing

Published: 2001-06-01

Total Pages: 299

ISBN-13: 9027299102

DOWNLOAD EBOOK

With the explosion in the quantity of on-line text and multimedia information in recent years, there has been a renewed interest in automatic summarization. This book provides a systematic introduction to the field, explaining basic definitions, the strategies used by human summarizers, and automatic methods that leverage linguistic and statistical knowledge to produce extracts and abstracts. Drawing from a wealth of research in artificial intelligence, natural language processing, and information retrieval, the book also includes detailed assessments of evaluation methods and new topics such as multi-document and multimedia summarization. Previous automatic summarization books have been either collections of specialized papers, or else authored books with only a chapter or two devoted to the field as a whole. This is the first textbook on the subject, developed based on teaching materials used in two one-semester courses. To further help the student reader, the book includes detailed case studies, accompanied by end-of-chapter reviews and an extensive glossary.Audience: students and researchers, as well as information technology managers, librarians, and anyone else interested in the subject.


Trends and Applications of Text Summarization Techniques

Trends and Applications of Text Summarization Techniques

Author: Fiori, Alessandro

Publisher: IGI Global

Published: 2019-08-30

Total Pages: 356

ISBN-13: 1522593756

DOWNLOAD EBOOK

While the availability of electronic documents increases exponentially with advancing technology, the time spent to process this wealth of resourceful information decreases. Content analysis and information extraction must be aided by summarization methods to quickly parcel pieces of interest and allow for succinct user familiarization in a simple, efficient manner. Trends and Applications of Text Summarization Techniques is a pivotal reference source that explores the latest approaches of document summarization including update, multi-lingual, and domain-oriented summarization tasks and examines their current real-world applications in multiple fields. Featuring coverage on a wide range of topics such as parallel construction, social network integration, and evaluation metrics, this book is ideally designed for information technology practitioners, computer scientists, bioinformatics analysts, business managers, healthcare professionals, academicians, researchers, and students.


The Theory and Practice of Discourse Parsing and Summarization

The Theory and Practice of Discourse Parsing and Summarization

Author: Daniel Marcu

Publisher: MIT Press

Published: 2000

Total Pages: 276

ISBN-13: 9780262133722

DOWNLOAD EBOOK

Most discourse researchers assume that full semantic understanding is necessary to derive the discourse structure of texts. This book documents an attempt to construct and use automatic and non-semantic computational structures for text summarization.


Natural Language Processing: Concepts, Methodologies, Tools, and Applications

Natural Language Processing: Concepts, Methodologies, Tools, and Applications

Author: Management Association, Information Resources

Publisher: IGI Global

Published: 2019-11-01

Total Pages: 1704

ISBN-13: 1799809528

DOWNLOAD EBOOK

As technology continues to become more sophisticated, a computer’s ability to understand, interpret, and manipulate natural language is also accelerating. Persistent research in the field of natural language processing enables an understanding of the world around us, in addition to opportunities for manmade computing to mirror natural language processes that have existed for centuries. Natural Language Processing: Concepts, Methodologies, Tools, and Applications is a vital reference source on the latest concepts, processes, and techniques for communication between computers and humans. Highlighting a range of topics such as machine learning, computational linguistics, and semantic analysis, this multi-volume book is ideally designed for computer engineers, computer and software developers, IT professionals, academicians, researchers, and upper-level students seeking current research on the latest trends in the field of natural language processing.


Natural Language Processing: Python and NLTK

Natural Language Processing: Python and NLTK

Author: Nitin Hardeniya

Publisher: Packt Publishing Ltd

Published: 2016-11-22

Total Pages: 687

ISBN-13: 178728784X

DOWNLOAD EBOOK

Learn to build expert NLP and machine learning projects using NLTK and other Python libraries About This Book Break text down into its component parts for spelling correction, feature extraction, and phrase transformation Work through NLP concepts with simple and easy-to-follow programming recipes Gain insights into the current and budding research topics of NLP Who This Book Is For If you are an NLP or machine learning enthusiast and an intermediate Python programmer who wants to quickly master NLTK for natural language processing, then this Learning Path will do you a lot of good. Students of linguistics and semantic/sentiment analysis professionals will find it invaluable. What You Will Learn The scope of natural language complexity and how they are processed by machines Clean and wrangle text using tokenization and chunking to help you process data better Tokenize text into sentences and sentences into words Classify text and perform sentiment analysis Implement string matching algorithms and normalization techniques Understand and implement the concepts of information retrieval and text summarization Find out how to implement various NLP tasks in Python In Detail Natural Language Processing is a field of computational linguistics and artificial intelligence that deals with human-computer interaction. It provides a seamless interaction between computers and human beings and gives computers the ability to understand human speech with the help of machine learning. The number of human-computer interaction instances are increasing so it's becoming imperative that computers comprehend all major natural languages. The first NLTK Essentials module is an introduction on how to build systems around NLP, with a focus on how to create a customized tokenizer and parser from scratch. You will learn essential concepts of NLP, be given practical insight into open source tool and libraries available in Python, shown how to analyze social media sites, and be given tools to deal with large scale text. This module also provides a workaround using some of the amazing capabilities of Python libraries such as NLTK, scikit-learn, pandas, and NumPy. The second Python 3 Text Processing with NLTK 3 Cookbook module teaches you the essential techniques of text and language processing with simple, straightforward examples. This includes organizing text corpora, creating your own custom corpus, text classification with a focus on sentiment analysis, and distributed text processing methods. The third Mastering Natural Language Processing with Python module will help you become an expert and assist you in creating your own NLP projects using NLTK. You will be guided through model development with machine learning tools, shown how to create training data, and given insight into the best practices for designing and building NLP-based applications using Python. This Learning Path combines some of the best that Packt has to offer in one complete, curated package and is designed to help you quickly learn text processing with Python and NLTK. It includes content from the following Packt products: NTLK essentials by Nitin Hardeniya Python 3 Text Processing with NLTK 3 Cookbook by Jacob Perkins Mastering Natural Language Processing with Python by Deepti Chopra, Nisheeth Joshi, and Iti Mathur Style and approach This comprehensive course creates a smooth learning path that teaches you how to get started with Natural Language Processing using Python and NLTK. You'll learn to create effective NLP and machine learning projects using Python and NLTK.


Proceedings of the International Conference on Frontiers of Intelligent Computing: Theory and Applications (FICTA) 2013

Proceedings of the International Conference on Frontiers of Intelligent Computing: Theory and Applications (FICTA) 2013

Author: Suresh Chandra Satapathy

Publisher: Springer Science & Business Media

Published: 2013-10-05

Total Pages: 553

ISBN-13: 3319029312

DOWNLOAD EBOOK

This volume contains the papers presented at the Second International Conference on Frontiers in Intelligent Computing: Theory and Applications (FICTA-2013) held during 14-16 November 2013 organized by Bhubaneswar Engineering College (BEC), Bhubaneswar, Odisha, India. It contains 63 papers focusing on application of intelligent techniques which includes evolutionary computation techniques like genetic algorithm, particle swarm optimization techniques, teaching-learning based optimization etc for various engineering applications such as data mining, Fuzzy systems, Machine Intelligence and ANN, Web technologies and Multimedia applications and Intelligent computing and Networking etc.