Automatic Laser Calibration, Mapping, and Localization for Autonomous Vehicles
Author: Jesse Sol Levinson
Publisher: Stanford University
Published: 2011
Total Pages: 153
ISBN-13:
DOWNLOAD EBOOKThis dissertation presents several related algorithms that enable important capabilities for self-driving vehicles. Using a rotating multi-beam laser rangefinder to sense the world, our vehicle scans millions of 3D points every second. Calibrating these sensors plays a crucial role in accurate perception, but manual calibration is unreasonably tedious, and generally inaccurate. As an alternative, we present an unsupervised algorithm for automatically calibrating both the intrinsics and extrinsics of the laser unit from only seconds of driving in an arbitrary and unknown environment. We show that the results are not only vastly easier to obtain than traditional calibration techniques, they are also more accurate. A second key challenge in autonomous navigation is reliable localization in the face of uncertainty. Using our calibrated sensors, we obtain high resolution infrared reflectivity readings of the world. From these, we build large-scale self-consistent probabilistic laser maps of urban scenes, and show that we can reliably localize a vehicle against these maps to within centimeters, even in dynamic environments, by fusing noisy GPS and IMU readings with the laser in realtime. We also present a localization algorithm that was used in the DARPA Urban Challenge, which operated without a prerecorded laser map, and allowed our vehicle to complete the entire six-hour course without a single localization failure. Finally, we present a collection of algorithms for the mapping and detection of traffic lights in realtime. These methods use a combination of computer-vision techniques and probabilistic approaches to incorporating uncertainty in order to allow our vehicle to reliably ascertain the state of traffic-light-controlled intersections.