Content-Based Audio Classification and Retrieval for Audiovisual Data Parsing

Content-Based Audio Classification and Retrieval for Audiovisual Data Parsing

Author: Tong Zhang

Publisher: Springer Science & Business Media

Published: 2013-03-09

Total Pages: 145

ISBN-13: 1475733399

DOWNLOAD EBOOK

Content-Based Audio Classification and Retrieval for Audiovisual Data Parsing is an up-to-date overview of audio and video content analysis. Included is extensive treatment of audiovisual data segmentation, indexing and retrieval based on multimodal media content analysis, and content-based management of audio data. In addition to the commonly studied audio types such as speech and music, the authors have included hybrid types of sounds that contain more than one kind of audio component such as speech or environmental sound with music in the background. Emphasis is also placed on semantic-level identification and classification of environmental sounds. The authors introduce a new generic audio retrieval system on top of the audio archiving schemes. Both theoretical analysis and implementation issues are presented. The developing MPEG-7 standards are explored. Content-Based Audio Classification and Retrieval for Audiovisual Data Parsing will be especially useful to researchers and graduate level students designing and developing fully functional audiovisual systems for audio/video content parsing of multimedia streams.


Multimedia Mining

Multimedia Mining

Author: Chabane Djeraba

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 242

ISBN-13: 1461511410

DOWNLOAD EBOOK

Multimedia Mining: A Highway to Intelligent Multimedia Documents brings together experts in digital media content analysis, state-of-art data mining and knowledge discovery in multimedia database systems, knowledge engineers and domain experts from diverse applied disciplines. Multimedia documents are ubiquitous and often required, if not essential, in many applications today. This phenomenon has made multimedia documents widespread and extremely large. There are tools for managing and searching within these collections, but the need for tools to extract hidden useful knowledge embedded within multimedia objects is becoming pressing and central for many decision-making applications. The tools needed today are tools for discovering relationships between objects or segments within multimedia document components, such as classifying images based on their content, extracting patterns in sound, categorizing speech and music, and recognizing and tracking objects in video streams.