EEG-Based Diagnosis of Alzheimer Disease

EEG-Based Diagnosis of Alzheimer Disease

Author: Nilesh Kulkarni

Publisher: Academic Press

Published: 2018-04-13

Total Pages: 112

ISBN-13: 0128153938

DOWNLOAD EBOOK

EEG-Based Diagnosis of Alzheimer Disease: A Review and Novel Approaches for Feature Extraction and Classification Techniques provides a practical and easy-to-use guide for researchers in EEG signal processing techniques, Alzheimer's disease, and dementia diagnostics. The book examines different features of EEG signals used to properly diagnose Alzheimer's Disease early, presenting new and innovative results in the extraction and classification of Alzheimer's Disease using EEG signals. This book brings together the use of different EEG features, such as linear and nonlinear features, which play a significant role in diagnosing Alzheimer's Disease. - Includes the mathematical models and rigorous analysis of various classifiers and machine learning algorithms from a perspective of clinical deployment - Covers the history of EEG signals and their measurement and recording, along with their uses in clinical diagnostics - Analyzes spectral, wavelet, complexity and other features of early and efficient Alzheimer's Disease diagnostics - Explores support vector machine-based classification to increase accuracy


Automated EEG-Based Diagnosis of Neurological Disorders

Automated EEG-Based Diagnosis of Neurological Disorders

Author: Hojjat Adeli

Publisher: CRC Press

Published: 2010-02-09

Total Pages: 424

ISBN-13: 1439815321

DOWNLOAD EBOOK

Based on the authors' groundbreaking research, Automated EEG-Based Diagnosis of Neurological Disorders: Inventing the Future of Neurology presents a research ideology, a novel multi-paradigm methodology, and advanced computational models for the automated EEG-based diagnosis of neurological disorders. It is based on the ingenious integration of thr


Handbook of Decision Support Systems for Neurological Disorders

Handbook of Decision Support Systems for Neurological Disorders

Author: D. Jude Hemanth

Publisher: Academic Press

Published: 2021-03-30

Total Pages: 322

ISBN-13: 0128222727

DOWNLOAD EBOOK

Handbook of Decision Support Systems for Neurological Disorders provides readers with complete coverage of advanced computer-aided diagnosis systems for neurological disorders. While computer-aided decision support systems for different medical imaging modalities are available, this is the first book to solely concentrate on decision support systems for neurological disorders. Due to the increase in the prevalence of diseases such as Alzheimer, Parkinson's and Dementia, this book will have significant importance in the medical field. Topics discussed include recent computational approaches, different types of neurological disorders, deep convolution neural networks, generative adversarial networks, auto encoders, recurrent neural networks, and modified/hybrid artificial neural networks. - Includes applications of computer intelligence and decision support systems for the diagnosis and analysis of a variety of neurological disorders - Presents in-depth, technical coverage of computer-aided systems for tumor image classification, Alzheimer's disease detection, dementia detection using deep belief neural networks, and morphological approaches for stroke detection - Covers disease diagnosis for cerebral palsy using auto-encoder approaches, contrast enhancement for performance enhanced diagnosis systems, autism detection using fuzzy logic systems, and autism detection using generative adversarial networks - Written by engineers to help engineers, computer scientists, researchers and clinicians understand the technology and applications of decision support systems for neurological disorders


Early Detection of Neurological Disorders Using Machine Learning Systems

Early Detection of Neurological Disorders Using Machine Learning Systems

Author: Paul, Sudip

Publisher: IGI Global

Published: 2019-06-28

Total Pages: 392

ISBN-13: 1522585680

DOWNLOAD EBOOK

While doctors and physicians are more than capable of detecting diseases of the brain, the most agile human mind cannot compete with the processing power of modern technology. Utilizing algorithmic systems in healthcare in this way may provide a way to treat neurological diseases before they happen. Early Detection of Neurological Disorders Using Machine Learning Systems provides innovative insights into implementing smart systems to detect neurological diseases at a faster rate than by normal means. The topics included in this book are artificial intelligence, data analysis, and biomedical informatics. It is designed for clinicians, doctors, neurologists, physiotherapists, neurorehabilitation specialists, scholars, academics, and students interested in topics centered on biomedical engineering, bio-electronics, medical electronics, physiology, neurosciences, life sciences, and physics.


Intelligent Data Analysis

Intelligent Data Analysis

Author: Deepak Gupta

Publisher: John Wiley & Sons

Published: 2020-07-13

Total Pages: 428

ISBN-13: 1119544459

DOWNLOAD EBOOK

This book focuses on methods and tools for intelligent data analysis, aimed at narrowing the increasing gap between data gathering and data comprehension, and emphasis will also be given to solving of problems which result from automated data collection, such as analysis of computer-based patient records, data warehousing tools, intelligent alarming, effective and efficient monitoring, and so on. This book aims to describe the different approaches of Intelligent Data Analysis from a practical point of view: solving common life problems with data analysis tools.


Brain Disorders in Critical Illness

Brain Disorders in Critical Illness

Author: Robert D. Stevens

Publisher: Cambridge University Press

Published: 2013-09-19

Total Pages: 457

ISBN-13: 1107434424

DOWNLOAD EBOOK

Brain dysfunction is a major clinical problem in intensive care, with potentially debilitating long-term consequences for post-ICU patients of any age. The resulting extended length of stay in the ICU and post-discharge cognitive dysfunction are now recognized as major healthcare burdens. This comprehensive clinical text provides intensivists and neurologists with a practical review of the pathophysiology of brain dysfunction and a thorough account of the diagnostic and therapeutic options available. Initial sections review the epidemiology, outcomes, relevant behavioral neurology and biological mechanisms of brain dysfunction. Subsequent sections evaluate the available diagnostic options and preventative and therapeutic interventions, with a final section on clinical encephalopathy syndromes encountered in the ICU. Each chapter is rich in illustrations, with an executive summary and a helpful glossary of terms. Brain Disorders in Critical Illness is a seminal reference for all physicians and neuroscientists interested in the care and outcome of severely ill patients.


Swarm Intelligence Optimization

Swarm Intelligence Optimization

Author: Abhishek Kumar

Publisher: John Wiley & Sons

Published: 2021-01-07

Total Pages: 384

ISBN-13: 1119778743

DOWNLOAD EBOOK

Resource optimization has always been a thrust area of research, and as the Internet of Things (IoT) is the most talked about topic of the current era of technology, it has become the need of the hour. Therefore, the idea behind this book was to simplify the journey of those who aspire to understand resource optimization in the IoT. To this end, included in this book are various real-time/offline applications and algorithms/case studies in the fields of engineering, computer science, information security, and cloud computing, along with the modern tools and various technologies used in systems, leaving the reader with a high level of understanding of various techniques and algorithms used in resource optimization.


EEG Signal Processing and Feature Extraction

EEG Signal Processing and Feature Extraction

Author: Li Hu

Publisher: Springer Nature

Published: 2019-10-12

Total Pages: 435

ISBN-13: 9811391130

DOWNLOAD EBOOK

This book presents the conceptual and mathematical basis and the implementation of both electroencephalogram (EEG) and EEG signal processing in a comprehensive, simple, and easy-to-understand manner. EEG records the electrical activity generated by the firing of neurons within human brain at the scalp. They are widely used in clinical neuroscience, psychology, and neural engineering, and a series of EEG signal-processing techniques have been developed. Intended for cognitive neuroscientists, psychologists and other interested readers, the book discusses a range of current mainstream EEG signal-processing and feature-extraction techniques in depth, and includes chapters on the principles and implementation strategies.


EEG Signal Processing

EEG Signal Processing

Author: Saeid Sanei

Publisher: John Wiley & Sons

Published: 2013-05-28

Total Pages: 312

ISBN-13: 1118691237

DOWNLOAD EBOOK

Electroencephalograms (EEGs) are becoming increasingly important measurements of brain activity and they have great potential for the diagnosis and treatment of mental and brain diseases and abnormalities. With appropriate interpretation methods they are emerging as a key methodology to satisfy the increasing global demand for more affordable and effective clinical and healthcare services. Developing and understanding advanced signal processing techniques for the analysis of EEG signals is crucial in the area of biomedical research. This book focuses on these techniques, providing expansive coverage of algorithms and tools from the field of digital signal processing. It discusses their applications to medical data, using graphs and topographic images to show simulation results that assess the efficacy of the methods. Additionally, expect to find: explanations of the significance of EEG signal analysis and processing (with examples) and a useful theoretical and mathematical background for the analysis and processing of EEG signals; an exploration of normal and abnormal EEGs, neurological symptoms and diagnostic information, and representations of the EEGs; reviews of theoretical approaches in EEG modelling, such as restoration, enhancement, segmentation, and the removal of different internal and external artefacts from the EEG and ERP (event-related potential) signals; coverage of major abnormalities such as seizure, and mental illnesses such as dementia, schizophrenia, and Alzheimer’s disease, together with their mathematical interpretations from the EEG and ERP signals and sleep phenomenon; descriptions of nonlinear and adaptive digital signal processing techniques for abnormality detection, source localization and brain-computer interfacing using multi-channel EEG data with emphasis on non-invasive techniques, together with future topics for research in the area of EEG signal processing. The information within EEG Signal Processing has the potential to enhance the clinically-related information within EEG signals, thereby aiding physicians and ultimately providing more cost effective, efficient diagnostic tools. It will be beneficial to psychiatrists, neurophysiologists, engineers, and students or researchers in neurosciences. Undergraduate and postgraduate biomedical engineering students and postgraduate epileptology students will also find it a helpful reference.


Machine Learning: Theory and Applications

Machine Learning: Theory and Applications

Author:

Publisher: Newnes

Published: 2013-05-16

Total Pages: 551

ISBN-13: 0444538666

DOWNLOAD EBOOK

Statistical learning and analysis techniques have become extremely important today, given the tremendous growth in the size of heterogeneous data collections and the ability to process it even from physically distant locations. Recent advances made in the field of machine learning provide a strong framework for robust learning from the diverse corpora and continue to impact a variety of research problems across multiple scientific disciplines. The aim of this handbook is to familiarize beginners as well as experts with some of the recent techniques in this field.The Handbook is divided in two sections: Theory and Applications, covering machine learning, data analytics, biometrics, document recognition and security. - Very relevant to current research challenges faced in various fields - Self-contained reference to machine learning - Emphasis on applications-oriented techniques