Automated Configuration has long been the subject of intensive research, especially in Artificial Intelligence. It is a pervasive problem to be solved, and it is a good test of various knowledge representation and reasoning techniques. The problem shows up in applications such as various electrical circuit design, utility computing and even concurrent engineering. Automated Configuration Problem Solving defines the ubiquitous problem, illustrates the various solution techniques, and includes a survey using these techniques from the mid-70's until the mid-90's. During this time, various general approaches were developed, and then become more specialized. This book covers the development of the general problem solving techniques for automated configuration, which are based on both published academic work and patents.
Propositional logic has been recognized throughout the centuries as one of the cornerstones of reasoning in philosophy and mathematics. Over time, its formalization into Boolean algebra was accompanied by the recognition that a wide range of combinatorial problems can be expressed as propositional satisfiability (SAT) problems. Because of this dual role, SAT developed into a mature, multi-faceted scientific discipline, and from the earliest days of computing a search was underway to discover how to solve SAT problems in an automated fashion. This book, the Handbook of Satisfiability, is the second, updated and revised edition of the book first published in 2009 under the same name. The handbook aims to capture the full breadth and depth of SAT and to bring together significant progress and advances in automated solving. Topics covered span practical and theoretical research on SAT and its applications and include search algorithms, heuristics, analysis of algorithms, hard instances, randomized formulae, problem encodings, industrial applications, solvers, simplifiers, tools, case studies and empirical results. SAT is interpreted in a broad sense, so as well as propositional satisfiability, there are chapters covering the domain of quantified Boolean formulae (QBF), constraints programming techniques (CSP) for word-level problems and their propositional encoding, and satisfiability modulo theories (SMT). An extensive bibliography completes each chapter. This second edition of the handbook will be of interest to researchers, graduate students, final-year undergraduates, and practitioners using or contributing to SAT, and will provide both an inspiration and a rich resource for their work. Edmund Clarke, 2007 ACM Turing Award Recipient: "SAT solving is a key technology for 21st century computer science." Donald Knuth, 1974 ACM Turing Award Recipient: "SAT is evidently a killer app, because it is key to the solution of so many other problems." Stephen Cook, 1982 ACM Turing Award Recipient: "The SAT problem is at the core of arguably the most fundamental question in computer science: What makes a problem hard?"
Decades of innovations in combinatorial problem solving have produced better and more complex algorithms. These new methods are better since they can solve larger problems and address new application domains. They are also more complex which means that they are hard to reproduce and often harder to fine-tune to the peculiarities of a given problem. This last point has created a paradox where efficient tools are out of reach of practitioners. Autonomous search (AS) represents a new research field defined to precisely address the above challenge. Its major strength and originality consist in the fact that problem solvers can now perform self-improvement operations based on analysis of the performances of the solving process -- including short-term reactive reconfiguration and long-term improvement through self-analysis of the performance, offline tuning and online control, and adaptive control and supervised control. Autonomous search "crosses the chasm" and provides engineers and practitioners with systems that are able to autonomously self-tune their performance while effectively solving problems. This is the first book dedicated to this topic, and it can be used as a reference for researchers, engineers, and postgraduates in the areas of constraint programming, machine learning, evolutionary computing, and feedback control theory. After the editors' introduction to autonomous search, the chapters are focused on tuning algorithm parameters, autonomous complete (tree-based) constraint solvers, autonomous control in metaheuristics and heuristics, and future autonomous solving paradigms. Autonomous search (AS) represents a new research field defined to precisely address the above challenge. Its major strength and originality consist in the fact that problem solvers can now perform self-improvement operations based on analysis of the performances of the solving process -- including short-term reactive reconfiguration and long-term improvement through self-analysis of the performance, offline tuning and online control, and adaptive control and supervised control. Autonomous search "crosses the chasm" and provides engineers and practitioners with systems that are able to autonomously self-tune their performance while effectively solving problems. This is the first book dedicated to this topic, and it can be used as a reference for researchers, engineers, and postgraduates in the areas of constraint programming, machine learning, evolutionary computing, and feedback control theory. After the editors' introduction to autonomous search, the chapters are focused on tuning algorithm parameters, autonomous complete (tree-based) constraint solvers, autonomous control in metaheuristics and heuristics, and future autonomous solving paradigms. This is the first book dedicated to this topic, and it can be used as a reference for researchers, engineers, and postgraduates in the areas of constraint programming, machine learning, evolutionary computing, and feedback control theory. After the editors' introduction to autonomous search, the chapters are focused on tuning algorithm parameters, autonomous complete (tree-based) constraint solvers, autonomous control in metaheuristics and heuristics, and future autonomous solving paradigms. This is the first book dedicated to this topic, and it can be used as a reference for researchers, engineers, and postgraduates in the areas of constraint programming, machine learning, evolutionary computing, and feedback control theory. After the editors' introduction to autonomous search, the chapters are focused on tuning algorithm parameters, autonomous complete (tree-based) constraint solvers, autonomous control in metaheuristics and heuristics, and future autonomous solving paradigms.
This book constitutes the refereed proceedings of the 7th International Conference on Integration of AI and OR Techniques in Constraint Programming for Combinatorial Optimization Problems, CPAIOR 2010, held in Bologna, Italy, in June 2010. The 18 revised full papers and 17 revised short papers presented together with the extended abstracts of 3 invited talks were carefully reviewed and selected from 72 submissions. The papers are focused on both theoretical and practical, application-oriented issues and present current research with a special focus on the integration and hybridization of the approaches of constraint programming, artificial intelligence, and operations research technologies for solving large scale and complex real life combinatorial optimization problems.
This two-volume set LNCS 11101 and 11102 constitutes the refereed proceedings of the 15th International Conference on Parallel Problem Solving from Nature, PPSN 2018, held in Coimbra, Portugal, in September 2018. The 79 revised full papers were carefully reviewed and selected from 205 submissions. The papers cover a wide range of topics in natural computing including evolutionary computation, artificial neural networks, artificial life, swarm intelligence, artificial immune systems, self-organizing systems, emergent behavior, molecular computing, evolutionary robotics, evolvable hardware, parallel implementations and applications to real-world problems. The papers are organized in the following topical sections: numerical optimization; combinatorial optimization; genetic programming; multi-objective optimization; parallel and distributed frameworks; runtime analysis and approximation results; fitness landscape modeling and analysis; algorithm configuration, selection, and benchmarking; machine learning and evolutionary algorithms; and applications. Also included are the descriptions of 23 tutorials and 6 workshops which took place in the framework of PPSN XV.
The Spring framework is growing. It has always been about choice. Java EE focused on a few technologies, largely to the detriment of alternative, better solutions. When the Spring framework debuted, few would have agreed that Java EE represented the best-in-breed architectures of the day. Spring debuted to great fanfare, because it sought to simplify Java EE. Each release since marks the introduction of new features designed to both simplify and enable solutions. With version 2.0 and later, the Spring framework started targeting multiple platforms. The framework provided services on top of existing platforms, as always, but was decoupled from the underlying platform wherever possible. Java EE is a still a major reference point, but it’s not the only target. OSGi (a promising technology for modular architectures) has been a big part of the SpringSource strategy here. Additionally, the Spring framework runs on Google App Engine. With the introduction of annotation-centric frameworks and XML schemas, SpringSource has built frameworks that effectively model the domain of a specific problem, in effect creating domain-specific languages (DSLs). Frameworks built on top of the Spring framework have emerged supporting application integration, batch processing, Flex and Flash integration, GWT, OSGi, and much more.
This book constitutes the thoroughly refereed post-conference proceedings of the 6th International Conference on Learning and Intelligent Optimization, LION 6, held in Paris, France, in January 2012. The 23 long and 30 short revised papers were carefully reviewed and selected from a total of 99 submissions. The papers focus on the intersections and uncharted territories between machine learning, artificial intelligence, mathematical programming and algorithms for hard optimization problems. In addition to the paper contributions the conference also included 3 invited speakers, who presented forefront research results and frontiers, and 3 tutorial talks, which were crucial in bringing together the different components of LION community.
NGINX is one of the most widely used web servers available today, in part because of its capabilities as a load balancer and reverse proxy server for HTTP and other network protocols. This cookbook provides easy-to-follow examples to real-world problems in application delivery. The practical recipes will help you set up and use either the open source or commercial offering to solve problems in various use cases. For professionals who understand modern web architectures, such as n-tier or microservice designs, and common web protocols including TCP and HTTP, these recipes provide proven solutions for security, software load balancing, and monitoring and maintaining NGINX’s application delivery platform. You’ll also explore advanced features of both NGINX and NGINX Plus, the free and licensed versions of this server. You’ll find recipes for: High-performance load balancing with HTTP, TCP, and UDP Securing access through encrypted traffic, secure links, HTTP authentication subrequests, and more Deploying NGINX to Google Cloud, AWS, and Azure cloud computing services Setting up and configuring NGINX Controller Installing and configuring the NGINX Plus App Protect module Enabling WAF through Controller ADC
This two-volume set LNCS 12269 and LNCS 12270 constitutes the refereed proceedings of the 16th International Conference on Parallel Problem Solving from Nature, PPSN 2020, held in Leiden, The Netherlands, in September 2020. The 99 revised full papers were carefully reviewed and selected from 268 submissions. The topics cover classical subjects such as automated algorithm selection and configuration; Bayesian- and surrogate-assisted optimization; benchmarking and performance measures; combinatorial optimization; connection between nature-inspired optimization and artificial intelligence; genetic and evolutionary algorithms; genetic programming; landscape analysis; multiobjective optimization; real-world applications; reinforcement learning; and theoretical aspects of nature-inspired optimization.
The first ICANNGA conference, devoted to biologically inspired computational paradigms, Neural Net works and Genetic Algorithms, was held in Innsbruck, Austria, in 1993. The meeting attracted researchers from all over Europe and further afield, who decided that this particular blend of topics should form a theme for a series of biennial conferences. The second meeting, held in Ales, France, in 1995, carried on the tradition set in Innsbruck of a relaxed and stimulating environment for the. exchange of ideas. The series has continued in Norwich, UK, in 1997, and Portoroz, Slovenia, in 1999. The Institute of Computer Science, Czech Academy of Sciences, is pleased to host the fifth conference in Prague. We have chosen the Liechtenstein palace under the Prague Castle as the conference site to enhance the traditionally good atmosphere of the meeting. There is an inspirational genius loci of the historical center of the city, where four hundred years ago a fruitful combination of theoretical and empirical method, through the collaboration of Johannes Kepler and Tycho de Brahe, led to the discovery of the laws of planetary orbits.