Human speech and music share a number of similarities and differences. One of the closest similarities is their temporal nature as both (i) develop over time, (ii) form sequences of temporal intervals, possibly differing in duration and acoustical marking by different spectral properties, which are perceived as a rhythm, and (iii) generate metrical expectations. Human brains are particularly efficient in perceiving, producing, and processing fine rhythmic information in music and speech. However a number of critical questions remain to be answered: Where does this human sensitivity for rhythm arise? How did rhythm cognition develop in human evolution? How did environmental rhythms affect the evolution of brain rhythms? Which rhythm-specific neural circuits are shared between speech and music, or even with other domains? Evolutionary processes’ long time scales often prevent direct observation: understanding the psychology of rhythm and its evolution requires a close-fitting integration of different perspectives. First, empirical observations of music and speech in the field are contrasted and generate testable hypotheses. Experiments exploring linguistic and musical rhythm are performed across sensory modalities, ages, and animal species to address questions about domain-specificity, development, and an evolutionary path of rhythm. Finally, experimental insights are integrated via synthetic modeling, generating testable predictions about brain oscillations underlying rhythm cognition and its evolution. Our understanding of the cognitive, neurobiological, and evolutionary bases of rhythm is rapidly increasing. However, researchers in different fields often work on parallel, potentially converging strands with little mutual awareness. This research topic builds a bridge across several disciplines, focusing on the cognitive neuroscience of rhythm as an evolutionary process. It includes contributions encompassing, although not limited to: (1) developmental and comparative studies of rhythm (e.g. critical acquisition periods, innateness); (2) evidence of rhythmic behavior in other species, both spontaneous and in controlled experiments; (3) comparisons of rhythm processing in music and speech (e.g. behavioral experiments, systems neuroscience perspectives on music-speech networks); (4) evidence on rhythm processing across modalities and domains; (5) studies on rhythm in interaction and context (social, affective, etc.); (6) mathematical and computational (e.g. connectionist, symbolic) models of “rhythmicity” as an evolved behavior.
The integration of information from various sensory modalities influences behaviour. It can induce behavioural benefits such as faster reaction times and enhanced detection of noisy signals but may also produce illusions, all of which have been characterized by specific neuronal signatures. Yet, while these effects of multisensory integration are largely accepted, the role of attention in this process is still the object of intense debate. On the one hand, it has been suggested that attention may guide multisensory integration in a top-down fashion by selection of specific inputs to be integrated out of the plethora of information in our environment. On the other hand, there is evidence that integration could occur in a bottom-up manner, based on temporal and spatial correlations, and outside the focus of attention. An extreme example is the multisensory enhancement of neural responses in anesthetised animals. Attention itself is not a unitary construct, and may refer to a range of different selection mechanisms. Therefore, the interplay between attention and multisensory integration can take many forms which explain, in part, the diversity of findings and the disputes in the literature. The goal of this Research Topic is to help clarify the picture by trying to answer the following questions from various perspectives: Under which circumstances does multisensory integration take place without attention?, and, When does attention determine the fate of multisensory integration?
Timing and Time Perception: Procedures, Measures, and Applications is a one-of-a-kind, collective effort to present the most utilized and known methods on timing and time perception. Specifically, it covers methods and analysis on circadian timing, synchrony perception, reaction/response time, time estimation, and alternative methods for clinical/developmental research. The book includes experimental protocols, programming code, and sample results and the content ranges from very introductory to more advanced so as to cover the needs of both junior and senior researchers. We hope that this will be the first step in future efforts to document experimental methods and analysis both in a theoretical and in a practical manner. Contributors are: Patricia V. Agostino, Rocío Alcalá-Quintana, Fuat Balcı, Karin Bausenhart, Richard Block, Ivana L. Bussi, Carlos S. Caldart, Mariagrazia Capizzi, Xiaoqin Chen, Ángel Correa, Massimiliano Di Luca, Céline Z. Duval, Mark T. Elliott, Dagmar Fraser, David Freestone, Miguel A. García-Pérez, Anne Giersch, Simon Grondin, Nori Jacoby, Florian Klapproth, Franziska Kopp, Maria Kostaki, Laurence Lalanne, Giovanna Mioni, Trevor B. Penney, Patrick E. Poncelet, Patrick Simen, Ryan Stables, Rolf Ulrich, Argiro Vatakis, Dominic Ward, Alan M. Wing, Kieran Yarrow, and Dan Zakay.
With the advent of modern cognitive neuroscience and new tools of studying the human brain "live," music as a highly complex, temporally ordered and rule-based sensory language quickly became a fascinating topic of study. The question of "how" music moves us, stimulates our thoughts, feelings, and kinesthetic sense, and how it can reach the human experience in profound ways is now measured with the advent of modern cognitive neuroscience. The goal of Rhythm, Music and the Brain is an attempt to bring the knowledge of the arts and the sciences and review our current state of study about the brain and music, specifically rhythm. The author provides a thorough examination of the current state of research, including the biomedical applications of neurological music therapy in sensorimotor speech and cognitive rehabilitation. This book will be of interest for the lay and professional reader in the sciences and arts as well as the professionals in the fields of neuroscientific research, medicine, and rehabilitation.
Music is an important source of enjoyment, learning, and well-being in life as well as a rich, powerful, and versatile stimulus for the brain. With the advance of modern neuroimaging techniques during the past decades, we are now beginning to understand better what goes on in the healthy brain when we hear, play, think, and feel music and how the structure and function of the brain can change as a result of musical training and expertise. For more than a century, music has also been studied in the field of neurology where the focus has mostly been on musical deficits and symptoms caused by neurological illness (e.g., amusia, musicogenic epilepsy) or on occupational diseases of professional musicians (e.g., focal dystonia, hearing loss). Recently, however, there has been increasing interest and progress also in adopting music as a therapeutic tool in neurological rehabilitation, and many novel music-based rehabilitation methods have been developed to facilitate motor, cognitive, emotional, and social functioning of infants, children and adults suffering from a debilitating neurological illness or disorder. Traditionally, the fields of music neuroscience and music therapy have progressed rather independently, but they are now beginning to integrate and merge in clinical neurology, providing novel and important information about how music is processed in the damaged or abnormal brain, how structural and functional recovery of the brain can be enhanced by music-based rehabilitation methods, and what neural mechanisms underlie the therapeutic effects of music. Ideally, this information can be used to better understand how and why music works in rehabilitation and to develop more effective music-based applications that can be targeted and tailored towards individual rehabilitation needs. The aim of this Research Topic is to bring together research across multiple disciplines with a special focus on music, brain, and neurological rehabilitation. We encourage researchers working in the field to submit a paper presenting either original empirical research, novel theoretical or conceptual perspectives, a review, or methodological advances related to following two core topics: 1) how are musical skills and attributes (e.g., perceiving music, experiencing music emotionally, playing or singing) affected by a developmental or acquired neurological illness or disorder (for example, stroke, aphasia, brain injury, Alzheimer’s disease, Parkinson’s disease, autism, ADHD, dyslexia, focal dystonia, or tinnitus) and 2) what is the applicability, effectiveness, and mechanisms of music-based rehabilitation methods for persons with a neurological illness or disorder? Research methodology can include behavioural, physiological and/or neuroimaging techniques, and studies can be either clinical group studies or case studies (studies of healthy subjects are applicable only if their findings have clear clinical implications).
Studies of mechanisms in the brain that allow complicated things to happen in a coordinated fashion have produced some of the most spectacular discoveries in neuroscience. This book provides eloquent support for the idea that spontaneous neuron activity, far from being mere noise, is actually the source of our cognitive abilities. It takes a fresh look at the coevolution of structure and function in the mammalian brain, illustrating how self-emerged oscillatory timing is the brain's fundamental organizer of neuronal information. The small-world-like connectivity of the cerebral cortex allows for global computation on multiple spatial and temporal scales. The perpetual interactions among the multiple network oscillators keep cortical systems in a highly sensitive "metastable" state and provide energy-efficient synchronizing mechanisms via weak links. In a sequence of "cycles," György Buzsáki guides the reader from the physics of oscillations through neuronal assembly organization to complex cognitive processing and memory storage. His clear, fluid writing-accessible to any reader with some scientific knowledge-is supplemented by extensive footnotes and references that make it just as gratifying and instructive a read for the specialist. The coherent view of a single author who has been at the forefront of research in this exciting field, this volume is essential reading for anyone interested in our rapidly evolving understanding of the brain.
Attention is a central concept in psychology. The term 'attention' itself has persisted, even though it implies a static, insulated capacity that we use when it is necessary to focus upon some relevant or stimulating event. Riess Jones presents a different way of thinking about attention; one that describes it as a continuous activity that is based on energy fluctuating in time. A majority of attention research fails to examine influence of event time structure (i.e., a speech utterance) on listeners' moment-to-moment attending. General research ignores listeners endowed with innate, as well as acquired, temporal biases. Here, attending is portrayed as a dynamic interaction of an individual within his or her surroundings. Importantly, this interaction involves synchronicity between an attender and external events. This emphasis on time and synchronicity distinguishes the author's theory, called Dynamic Attending Theory (DAT), from other approaches to attending which characterize attention metaphorically as a filter, resource pool, spotlight, and so on. Recent research from neuroscience has lent support to Riess Jones' theory, and the goal of this book is to bring this new research as well as her own to the wide audience of psychologists interested in attention more broadly.