Atomic Spectroscopy and Radiative Processes

Atomic Spectroscopy and Radiative Processes

Author: Egidio Landi Degl'Innocenti

Publisher: Springer

Published: 2014-06-24

Total Pages: 432

ISBN-13: 8847028086

DOWNLOAD EBOOK

This book describes the basic physical principles of atomic spectroscopy and the absorption and emission of radiation in astrophysical and laboratory plasmas. It summarizes the basics of electromagnetism and thermodynamics and then describes in detail the theory of atomic spectra for complex atoms, with emphasis on astrophysical applications. Both equilibrium and non-equilibrium phenomena in plasmas are considered. The interaction between radiation and matter is described, together with various types of radiation (e.g., cyclotron, synchrotron, bremsstrahlung, Compton). The basic theory of polarization is explained, as is the theory of radiative transfer for astrophysical applications. Atomic Spectroscopy and Radiative Processes bridges the gap between basic books on atomic spectroscopy and the very specialized publications for the advanced researcher: it will provide under- and postgraduates with a clear in-depth description of theoretical aspects, supported by practical examples of applications.


Radiative Processes in Atomic Physics

Radiative Processes in Atomic Physics

Author: Vladimir Pavlovich Kraĭnov

Publisher: Wiley-VCH

Published: 1997-08

Total Pages: 320

ISBN-13:

DOWNLOAD EBOOK

This book offers advanced students and researchers an up-to-date quantum treatment of the interaction of atoms with electromagnetic radiation. Problems and solutions are used to develop concepts, terminology, and the principal results of the quantum theory of radiative processes in atoms. Concepts covered include: radiative transitions between discrete states in atomic systems, atomic photoprocesses involving free particles, coherent phenomena in radiative transitions, extensive treatment of line-broadening mechanisms, atoms in strong fields and theory of angular momentum.


Atomic and Molecular Radiative Processes

Atomic and Molecular Radiative Processes

Author: Vladimir Krainov

Publisher: Springer

Published: 2019-07-03

Total Pages: 273

ISBN-13: 3030219550

DOWNLOAD EBOOK

This book describes selected problems in contemporary spectroscopy in the context of quantum mechanics and statistical physics. It focuses on elementary radiative processes involving atomic particles (atoms, molecules, ions), which include radiative transitions between discrete atomic states, the photoionization of atoms, photorecombination of electrons and ions, bremsstrahlung, photodissociation of molecules, and photoattachment of electrons to atoms. In addition to these processes, the transport of resonant radiation in atomic gases and propagation of infrared radiation in molecular gases are also considered. The book subsequently addresses applied problems such as optical pumping, cooling of gases via laser resonance radiation, light-induced drift of gas atoms, photoresonant plasma, reflection of radio waves from the ionosphere, and detection of submillimeter radiation using Rydberg atoms. Lastly, topical examples in atmospheric and climate change science are presented, such as lightning channel glowing, emission of the solar photosphere, and the greenhouse phenomenon in the atmospheres of the Earth and Venus. Along with researchers, both graduate and undergraduate students in atomic, molecular and atmospheric physics will find this book a useful and timely guide.


Atomic Properties in Hot Plasmas

Atomic Properties in Hot Plasmas

Author: Jacques Bauche

Publisher: Springer

Published: 2015-08-03

Total Pages: 386

ISBN-13: 3319181475

DOWNLOAD EBOOK

This book is devoted to the calculation of hot-plasma properties which generally requires a huge number of atomic data. It is the first book that combines information on the details of the basic atomic physics and its application to atomic spectroscopy with the use of the relevant statistical approaches. Information like energy levels, radiative rates, collisional and radiative cross-sections, etc., must be included in equilibrium or non-equilibrium models in order to describe both the atomic-population kinetics and the radiative properties. From the very large number of levels and transitions involved in complex ions, some statistical (global) properties emerge. The book presents a coherent set of concepts and compact formulas suitable for tractable and accurate calculations. The topics addressed are: radiative emission and absorption, and a dozen of other collisional and radiative processes; transition arrays between level ensembles (configurations, superconfigurations); effective temperatures of configurations, superconfigurations, and ions; charge-state distributions; radiative power losses and opacity. There are many numerical examples and comparisons with experiment presented throughout the book. The plasma properties described in this book are especially relevant to large nuclear fusion facilities such as the NIF (California) and the ITER (France), and to astrophysics. Methods relevant to the central-field configurational model are described in detail in the appendices: tensor-operator techniques, second-quantization formalism, statistical distribution moments, and the algebra of partition functions. Some extra tools are propensity laws, correlations, and fractals. These methods are applied to the analytical derivation of many properties, specially the global ones, through which the complexity is much reduced. The book is intended for graduate-level students, and for physicists working in the field.


Theoretical Atomic Spectroscopy

Theoretical Atomic Spectroscopy

Author: Zenonas Rudzikas

Publisher:

Published: 2007-07-26

Total Pages: 466

ISBN-13:

DOWNLOAD EBOOK

This monograph presents a complete guide to the theory of modern spectroscopy of atoms. Atomic spectroscopy continues to be one of the most important subjects of contemporary physics. The book describes the contemporary state of the theory of many-electron atoms and ions, the peculiarities of their structure and spectra, the processes of their interaction with radiation, and some of the applications of atomic spectroscopy. It contains a large number of new results, which have been published mainly in Russian and are therefore almost unknown to western scientists. Primarily a reference for researchers and graduate students in atomic physics and physical chemistry, this work will also be of value to physicists and chemists in other areas who use spectroscopy in their work.


Atomic Spectra and Radiative Transitions

Atomic Spectra and Radiative Transitions

Author: I.I. Sobelman

Publisher: Springer Science & Business Media

Published: 2013-04-17

Total Pages: 318

ISBN-13: 3662059053

DOWNLOAD EBOOK

My previous book on the theory of atomic spectra was published in Russian about fifteen years ago. Besides the traditional problems usually included in a book on atomic spectroscopy, some other problems arising in various applications of spectroscopic methods were also discussed in the book. These include, for example, continuous spectrum radiation, excitation of atoms, and spectral line broadening. Extensive revisions were made in the English version of the book published by the Pergamon Press in 1972, especially in the chapter devoted to the problem of excitation of atoms. This book is intended as the first part of a two-volume presentation of the theory of atomic spectra, atomic radiative transitions, excitation of atoms, and spectral line broadening. The aim in preparing these new books has been to stress the problems connected with the most interesting applications of atomic spectroscopy to plasma diagnostics, astrophysics, laser physics, and other fields, which have been developed very intensively in recent years. The content of this first volume, devoted to the systematics of atomic spectra and radiative transitions, is similar to that of Chapters 1-6, 8 and 9 of the old book, but considerable revision has been made. Some sections, such as those on the Hartree-Fock method, the Dirac equation, and relativistic corrections, have been deleted. At the same time, more attention is paid to radiative transitions. More extensive tables of oscillator strengths, prob abilities, and effective cross sections of radiative transitions in discrete and continuous spectra are given.


Atomic Astrophysics and Spectroscopy

Atomic Astrophysics and Spectroscopy

Author: Anil K. Pradhan

Publisher: Cambridge University Press

Published: 2011-01-06

Total Pages: 376

ISBN-13: 113949497X

DOWNLOAD EBOOK

Spectroscopy enables the precise study of astronomical objects and phenomena. Bridging the gap between physics and astronomy, this is the first integrated graduate-level textbook on atomic astrophysics. It covers the basics of atomic physics and astrophysics, including state-of-the-art research applications, methods and tools. The content is evenly balanced between the physical foundations of spectroscopy and their applications to astronomical objects and cosmology. An undergraduate knowledge of physics is assumed, and relevant basic material is summarized at the beginning of each chapter. The material is completely self-contained and features sufficient background information for self-study. Advanced users will find it handy for spectroscopic studies. A website hosted by the authors contains updates, corrections, exercises and solutions, as well as news items from physics and astronomy related to spectroscopy. A link to this can be found at www.cambridge.org/9780521825368.


Atomic Radiative Processes

Atomic Radiative Processes

Author: Peter R. Fontana

Publisher: Elsevier

Published: 2012-12-02

Total Pages: 289

ISBN-13: 0323157513

DOWNLOAD EBOOK

Atomic Radiative Processes provides a unified treatment of the theory of atomic radiative processes. Fourier transforms are used to obtain solutions of time-dependent Schrödinger equations, and coupled differential equations are transformed to coupled linear equations that in most cases can be readily solved. This book consists of nine chapters and begins with an overview of some of the properties of the classical field and its interaction with particles, focusing on those aspects needed for a better understanding of quantum theory. The Hamiltonian formalism is used to quantize the field, and the density of states of the radiation field is considered. The following chapters focus on a few Fourier transform techniques and their application to such areas as coherence properties of the field and amplitude and intensity correlations; the theory of angular momentum; the properties of irreducible tensors; quantization of the radiation field; and photon states. The interaction of a two-level atom with single modes of the radiation field is also discussed, along with spontaneous emission and decay processes; the evolution of coupled atomic states; the frequency distribution of emitted radiation; and radiative excitation and fluorescence. This monograph is intended for students and researchers in pure and applied physics.