Computer Simulation of Materials at Atomic Level

Computer Simulation of Materials at Atomic Level

Author: P鈋ter·De鈇k

Publisher: John Wiley & Sons

Published: 2000

Total Pages: 742

ISBN-13: 9783527402908

DOWNLOAD EBOOK

Peter Dea, Thomas Frauenheim, Mark R. Pederson (eds.) Computer Simulation of Materials at Atomic Level Combining theory and applications, this book deals with the modelling of materials properties and phenomena at atomic level. The first part provides an overview of the state-of-the-art of computational solid state physics. Emphasis is given on the understanding of approximations and their consequences regarding the accuracy of the results. This part of the book also deals as a guide to find the best method for a given purpose. The second part offers a potpourri of interesting topical applications, showing what can be achieved by computational modelling. Here the possibilities and the limits of the methods are stressed. A CD-ROM supplies various demo programmes of applications.


Atomic-Scale Modelling of Electrochemical Systems

Atomic-Scale Modelling of Electrochemical Systems

Author: Marko M. Melander

Publisher: John Wiley & Sons

Published: 2021-09-09

Total Pages: 372

ISBN-13: 1119605636

DOWNLOAD EBOOK

Atomic-Scale Modelling of Electrochemical Systems A comprehensive overview of atomistic computational electrochemistry, discussing methods, implementation, and state-of-the-art applications in the field The first book to review state-of-the-art computational and theoretical methods for modelling, understanding, and predicting the properties of electrochemical interfaces. This book presents a detailed description of the current methods, their background, limitations, and use for addressing the electrochemical interface and reactions. It also highlights several applications in electrocatalysis and electrochemistry. Atomic-Scale Modelling of Electrochemical Systems discusses different ways of including the electrode potential in the computational setup and fixed potential calculations within the framework of grand canonical density functional theory. It examines classical and quantum mechanical models for the solid-liquid interface and formation of an electrochemical double-layer using molecular dynamics and/or continuum descriptions. A thermodynamic description of the interface and reactions taking place at the interface as a function of the electrode potential is provided, as are novel ways to describe rates of heterogeneous electron transfer, proton-coupled electron transfer, and other electrocatalytic reactions. The book also covers multiscale modelling, where atomic level information is used for predicting experimental observables to enable direct comparison with experiments, to rationalize experimental results, and to predict the following electrochemical performance. Uniquely explains how to understand, predict, and optimize the properties and reactivity of electrochemical interfaces starting from the atomic scale Uses an engaging “tutorial style” presentation, highlighting a solid physicochemical background, computational implementation, and applications for different methods, including merits and limitations Bridges the gap between experimental electrochemistry and computational atomistic modelling Written by a team of experts within the field of computational electrochemistry and the wider computational condensed matter community, this book serves as an introduction to the subject for readers entering the field of atom-level electrochemical modeling, while also serving as an invaluable reference for advanced practitioners already working in the field.


Atomic-Scale Modeling of Nanosystems and Nanostructured Materials

Atomic-Scale Modeling of Nanosystems and Nanostructured Materials

Author: Carlo Massobrio

Publisher: Springer

Published: 2010-01-19

Total Pages: 382

ISBN-13: 3642046509

DOWNLOAD EBOOK

Understanding the structural organization of materials at the atomic scale is a lo- standing challenge of condensed matter physics and chemistry. By reducing the size of synthesized systems down to the nanometer, or by constructing them as collection of nanoscale size constitutive units, researchers are faced with the task of going beyond models and interpretations based on bulk behavior. Among the wealth of new materials having in common a “nanoscale” ngerprint, one can encounter systems intrinsically extending to a few nanometers (clusters of various compo- tions), systems featuring at least one spatial dimension not repeated periodically in space and assemblies of nanoscale grains forming extended compounds. For all these cases, there is a compelling need of an atomic-scale information combining knowledge of the topology of the system and of its bonding behavior, based on the electronic structure and its interplay with the atomic con gurations. Recent dev- opments in computer architectures and progresses in available computational power have made possible the practical realization of a paradygma that appeared totally unrealistic at the outset of computer simulations in materials science. This consists inbeing able to parallel (at least inprinciple) any experimental effort by asimulation counterpart, this occurring at the scale most appropriate to complement and enrich the experiment.


Advanced Calculations for Defects in Materials

Advanced Calculations for Defects in Materials

Author: Audrius Alkauskas

Publisher: John Wiley & Sons

Published: 2011-05-16

Total Pages: 374

ISBN-13: 3527638539

DOWNLOAD EBOOK

This book investigates the possible ways of improvement by applying more sophisticated electronic structure methods as well as corrections and alternatives to the supercell model. In particular, the merits of hybrid and screened functionals, as well as of the +U methods are assessed in comparison to various perturbative and Quantum Monte Carlo many body theories. The inclusion of excitonic effects is also discussed by way of solving the Bethe-Salpeter equation or by using time-dependent DFT, based on GW or hybrid functional calculations. Particular attention is paid to overcome the side effects connected to finite size modeling. The editors are well known authorities in this field, and very knowledgeable of past developments as well as current advances. In turn, they have selected respected scientists as chapter authors to provide an expert view of the latest advances. The result is a clear overview of the connections and boundaries between these methods, as well as the broad criteria determining the choice between them for a given problem. Readers will find various correction schemes for the supercell model, a description of alternatives by applying embedding techniques, as well as algorithmic improvements allowing the treatment of an ever larger number of atoms at a high level of sophistication.


Retooling Manufacturing

Retooling Manufacturing

Author: National Research Council

Publisher: National Academies Press

Published: 2004-09-30

Total Pages: 123

ISBN-13: 0309092663

DOWNLOAD EBOOK

As the Department of Defense continues development of the future warrior system, the difficulty of moving rapidly from design to manufacturing for complex technologies is becoming a major concern. In particular, there are communication gaps between design and manufacturing that hinder rapid development of new products important for these future military developments. To help address those concerns, DOD asked the NRC to develop a framework for "bridging" these gaps through data management, modeling, and simulation. This report presents the results of this study. It provides a framework for virtual design and manufacturing and an assessment of the necessary tools; an analysis of the economic dimensions; an examination of barriers to virtual design and manufacturing in the DOD acquisition process; and a series of recommendations and research needs.


Advances in Photoelectrochemical Water Splitting

Advances in Photoelectrochemical Water Splitting

Author: S. David Tilley

Publisher: Royal Society of Chemistry

Published: 2018

Total Pages: 302

ISBN-13: 1782629254

DOWNLOAD EBOOK

Tremendous research is taking place to make photoelectrochemical (PEC) water splitting technology a reality. Development of high performance PEC systems requires an understanding of the theory to design novel materials with attractive band gaps and stability. Focusing on theory and systems analysis, Advances in Photoelectrochemical Water Splitting provides an up-to-date review of this exciting research landscape. The book starts by addressing the challenges of water splitting followed by chapters on the theoretical design of PEC materials and their computational screening. The book then explores advances in identifying reaction intermediates in PEC materials as well as developments in solution processed photoelectrodes, photocatalyst sheets, and bipolar membranes. The final part of the book focuses on systems analysis, which lays out a roadmap of where researchers hope the fundamental research will lead us. Edited by world experts in the field of solar fuels, the book provides a comprehensive overview of photoelectrochemical water splitting, from theoretical aspects to systems analysis, for the energy research community.


Atomistic Simulation of Anistropic Crystal Structures at Nanoscale

Atomistic Simulation of Anistropic Crystal Structures at Nanoscale

Author: Jia Fu

Publisher: BoD – Books on Demand

Published: 2019-05-10

Total Pages: 180

ISBN-13: 1838802010

DOWNLOAD EBOOK

Multiscale simulations of atomistic/continuum coupling in computational materials science, where the scale expands from macro-/micro- to nanoscale, has become a hot research topic. These small units, usually nanostructures, are commonly anisotropic. The development of molecular modeling tools to describe and predict the mechanical properties of structures reveals an undeniable practical importance. Typical anisotropic structures (e.g. cubic, hexagonal, monoclinic) using DFT, MD, and atomic finite element methods are especially interesting, according to the modeling requirement of upscaling structures. It therefore connects nanoscale modeling and continuous patterns of deformation behavior by identifying relevant parameters from smaller to larger scales. These methodologies have the prospect of significant applications. I would like to recommend this book to both beginners and experienced researchers.


Mechanical Properties of Nanostructured Materials

Mechanical Properties of Nanostructured Materials

Author: Abdolhossein Fereidoon

Publisher: Xlibris Corporation

Published: 2016-09-26

Total Pages: 117

ISBN-13: 1524544116

DOWNLOAD EBOOK

Nowadays, with the improved abilities of computers, molecular modeling has become a powerful technique in computational chemistry with ever-increasing practical interests. At the moment, using effective algorithms along with powerful processors enables us to simulate systems, including thousands of atoms up to several microseconds. However, finding a balance between the computational costs and reliable results still remains a challenge. Two general approaches help us to reveal the behavior of these systems: quantum chemical calculations and molecular mechanics calculations. Quantum mechanics deals with physical phenomena as well as atoms behavior during chemical bonding and falls in the category of modern physics. In this book, two of the most practical quantum mechanics approaches are investigated: density functional theory (DFT) and density-functional tight-binding (DFTB).


Electron Density

Electron Density

Author: Pratim Kumar Chattaraj

Publisher: John Wiley & Sons

Published: 2024-09-30

Total Pages: 613

ISBN-13: 1394217625

DOWNLOAD EBOOK

Discover theoretical, methodological, and applied perspectives on electron density studies and density functional theory Electron density or the single particle density is a 3D function even for a many-electron system. Electron density contains all information regarding the ground state and also about some excited states of an atom or a molecule. All the properties can be written as functionals of electron density, and the energy attains its minimum value for the true density. It has been used as the basis for a quantum chemical computational method called Density Functional Theory, or DFT, which can be used to determine various properties of molecules. DFT brings out a drastic reduction in computational cost due to its reduced dimensionality. Thus, DFT is considered to be the workhorse for modern computational chemistry, physics as well as materials science. Electron Density: Concepts, Computation and DFT Applications offers an introduction to the foundations and applications of electron density studies and analysis. Beginning with an overview of major methodological and conceptual issues in electron density, it analyzes DFT and its major successful applications. The result is a state-of-the-art reference for a vital tool in a range of experimental sciences. Readers will also find: A balance of fundamentals and applications to facilitate use by both theoretical and computational scientists Detailed discussion of topics including the Levy-Perdew-Sahni equation, the Kohn Sham Inversion problem, and more Analysis of DFT applications including the determination of structural, magnetic, and electronic properties Electron Density: Concepts, Computation and DFT Applications is ideal for academic researchers in quantum, theoretical, and computational chemistry and physics.