Atomic Processes in Basic and Applied Physics

Atomic Processes in Basic and Applied Physics

Author: Viacheslav Shevelko

Publisher: Springer Science & Business Media

Published: 2012-05-31

Total Pages: 501

ISBN-13: 3642255698

DOWNLOAD EBOOK

The book is a comprehensive edition which considers the interactions of atoms, ions and molecules with charged particles, photons and laser fields and reflects the present understanding of atomic processes such as electron capture, target and projectile ionisation, photoabsorption and others occurring in most of laboratory and astrophysical plasma sources including many-photon and many-electron processes. The material consists of selected papers written by leading scientists in various fields.


Reference Data on Atomic Physics and Atomic Processes

Reference Data on Atomic Physics and Atomic Processes

Author: Boris M. Smirnov

Publisher: Springer Science & Business Media

Published: 2008-09-03

Total Pages: 180

ISBN-13: 3540793631

DOWNLOAD EBOOK

Each scientist works with certain information and collects it in the course of prof- sional activity. In the same manner, the author collected data for atomic physics and atomic processes. This information was checked in the course of the author’s p- fessional activity and was published in the form of appendices to the corresponding books on atomic and plasma physics. Now it has been decided to publish these data separately. This book contains atomic data and useful information about atomic particles and atomic systems including molecules, nanoclusters, metals and condensed s- tems of elements. It also gives information about atomic processes and transport processes in gases and plasmas. In addition, the book deals with general concepts and simple models for these objects and processes. We give units and conversion factors for them as well as conversion factors for spread formulas of general physics and the physics of atoms, clusters and ionized gases since such formulas are used in professional practice by each scientist of this area.


Atomic and Molecular Processes

Atomic and Molecular Processes

Author: D.R. Bates

Publisher: Elsevier

Published: 2012-12-02

Total Pages: 923

ISBN-13: 0323142001

DOWNLOAD EBOOK

Atomic and Molecular Processes describes radiative and collisional processes involving atoms or molecules. Organized into 21 chapters, this book emphasizes the developments in these processes stimulated by the growth of interest in space science, astrophysics, and plasma physics. The book initially discusses the general theory of magnetic dipole and electric quadrupole radiation and the calculations and observations on individual atoms, as well as the forbidden transitions. The text then explores general topics on forbidden and allowed lines and bands; photoionization; photodetachment; recombination and attachment; elastic and inelastic scattering of electron; and energy loss by slow electrons. Discussions on collision broadening of spectral features and encounters between atomic systems including range, energy loss, excitation, ionization, detachment, charge transfer, elastic scattering, mobility, diffusion, relaxation in gases, and chemical reactions are provided in other chapters. A chapter is devoted to the use of high-temperature shock waves, and accounts of other main experimental methods are given.


Atomic Multielectron Processes

Atomic Multielectron Processes

Author: Viatcheslav Shevelko

Publisher: Springer Science & Business Media

Published: 2013-03-09

Total Pages: 184

ISBN-13: 3662035413

DOWNLOAD EBOOK

Atomic Multielectron Processes is the first comprehensive collection of the data (mostly cross sections and methods) devoted to the multielectron transitions in atoms and ions induced by single collisions with charged particles and photons. The book covers the fundamental ranges of atomic physics which helps understanding the nature of many particle transitions.


Plasmas

Plasmas

Author: C. F. Barnett

Publisher: Academic Press

Published: 2013-09-11

Total Pages: 517

ISBN-13: 1483218678

DOWNLOAD EBOOK

Applied Atomic Collision Physics, Volume 2: Plasmas covers topics on magnetically confined plasmas. The book starts by providing the history of fusion research and describing the various approaches in both magnetically and inertially confined plasmas. The text then gives a general discussion of the basic concepts and properties in confinement and heating of a plasma. The theory of atomic collisions that result in excited quantum states, particularly highly ionized impurity atoms; and diverse diagnostic topics such as emission spectra, laser scattering, electron cyclotron emission, particle beams, and bremsstrahlung are also considered. The book further tackles heating of plasma by energetic particles; the boundary or edge plasma and particle-surface interactions; and the role of atomic physics in hot dense plasmas. Physicists and people involved in plasma and fusion energy studies will find the book invaluable.


Plasma Atomic Physics

Plasma Atomic Physics

Author: Frank B. Rosmej

Publisher: Springer Nature

Published: 2021-09-06

Total Pages: 668

ISBN-13: 3030059685

DOWNLOAD EBOOK

Plasma Atomic Physics provides an overview of the elementary processes within atoms and ions in plasmas, and introduces readers to the language of atomic spectra and light emission, allowing them to explore the various and fascinating radiative properties of matter. The book familiarizes readers with the complex quantum-mechanical descriptions of electromagnetic and collisional processes, while also developing a number of effective qualitative models that will allow them to obtain adequately comprehensive descriptions of collisional-radiative processes in dense plasmas, dielectronic satellite emissions and autoionizing states, hollow ion X-ray emissions, polarized atoms and ions, hot electrons, charge exchange, atomic population kinetics, and radiation transport. Numerous applications to plasma spectroscopy and experimental data are presented, which concern magnetic confinement fusion, inertial fusion, laser-produced plasmas, and X-ray free-electron lasers’ interaction with matter. Particular highlights include the development of quantum kinetics to a level surpassing the almost exclusively used quasi-classical approach in atomic population kinetics, the introduction of the recently developed Quantum-F-Matrix-Theory (QFMT) to study the impact of plasma microfields on atomic populations, and the Enrico Fermi equivalent photon method to develop the “Plasma Atom”, where the response properties and oscillator strength distribution are represented with the help of a local plasma frequency of the atomic electron density. Based on courses held by the authors, this material will assist students and scientists studying the complex processes within atoms and ions in different kinds of plasmas by developing relatively simple but highly effective models. Considerable attention is paid to a number of qualitative models that deliver physical transparency, while extensive tables and formulas promote the practical and useful application of complex theories and provide effective tools for non-specialist readers.


Atomic Processes in Plasmas

Atomic Processes in Plasmas

Author: Roberto C. Mancini

Publisher: American Inst. of Physics

Published: 2000-12-07

Total Pages: 334

ISBN-13: 9781563969768

DOWNLOAD EBOOK

The 12th Topical Conference on Atomic Processes in Plasmas continued a biennial series begun in 1977 to provide a forum for researchers involved in areas of overlap between atomic and plasma physics. This interdisciplinary area is essential to progress in basic and applied research in both atomic and plasma physics. The papers in this proceedings volume cover topics in atomic and molecular processes in laboratory and astrophysical plasmas, atomic theory and experiment, atomic data compilation and databases, plasma atomic kinetics, X-ray sources and lasers, inertially and magnetically confined plasmas, z-pinch plasmas, atomic processes in dense plasmas, industrial plasmas, line profiles, and spectroscopic plasma diagnostics.


Atomic and Molecular Radiative Processes

Atomic and Molecular Radiative Processes

Author: Vladimir Krainov

Publisher: Springer

Published: 2019-07-03

Total Pages: 273

ISBN-13: 3030219550

DOWNLOAD EBOOK

This book describes selected problems in contemporary spectroscopy in the context of quantum mechanics and statistical physics. It focuses on elementary radiative processes involving atomic particles (atoms, molecules, ions), which include radiative transitions between discrete atomic states, the photoionization of atoms, photorecombination of electrons and ions, bremsstrahlung, photodissociation of molecules, and photoattachment of electrons to atoms. In addition to these processes, the transport of resonant radiation in atomic gases and propagation of infrared radiation in molecular gases are also considered. The book subsequently addresses applied problems such as optical pumping, cooling of gases via laser resonance radiation, light-induced drift of gas atoms, photoresonant plasma, reflection of radio waves from the ionosphere, and detection of submillimeter radiation using Rydberg atoms. Lastly, topical examples in atmospheric and climate change science are presented, such as lightning channel glowing, emission of the solar photosphere, and the greenhouse phenomenon in the atmospheres of the Earth and Venus. Along with researchers, both graduate and undergraduate students in atomic, molecular and atmospheric physics will find this book a useful and timely guide.