The present report is a revision of Safety Series No. 75-INSAG-3 (1988), updating the statements made on the objectives and principles of safe design and operation for electricity generating nuclear power plants. It includes the improvements made in the safety of operating nuclear power plants and identifies the principles underlying the best current safety policies to be applied in future plants. It presents INSAG's understanding of the principles underlying the best current safety policies and practices of the nuclear power industry.
On the basis of the principles included in the Fundamental Safety Principles, IAEA Safety Standards Series No. SF-1, this Safety Requirements publication establishes requirements applicable to the design of nuclear power plants. It covers the design phase and provides input for the safe operation of the power plant. It elaborates on the safety objective, safety principles and concepts that provide the basis for deriving the safety requirements that must be met for the design of a nuclear power plant. Contents: 1. Introduction; 2. Applying the safety principles and concepts; 3. Management of safety in design; 4. Principal technical requirements; 5. General plant design; 6. Design of specific plant systems.
Deterministic safety analysis is an important tool for confirming the adequacy and efficiency of provisions within the defence in depth concept for the safety of nuclear power plants (NPPs). IAEA Safety Standards Series No. NS-R-1.2 and Safety Reports Series No. 23 recommend, as one of the options for demonstrating the inclusion of adequate safety margins, the use of best estimate computer codes with realistic input data in combination with the evaluation of uncertainties in the calculation results. The evaluation of uncertainties is an issue of considerable complexity, and this Safety Report has been developed to complement the existing publications. It provides more detailed information on the methods available for the evaluation of uncertainties in deterministic safety analysis of NPPs and practical guidance in the use of these methods.
A concise and current treatment of the subject of nuclear power safety, this work addresses itself to such issues of public concern as: radioactivity in routine effluents and its effect on human health and the environment, serious reactor accidents and their consequences, transportation accidents involving radioactive waste, the disposal of radioactive waste, particularly high-level wastes, and the possible theft of special nuclear materials and their fabrication into a weapon by terrorists. The implementation of the defense-in-depth concept of nuclear power safety is also discussed. Of interest to all undergraduate and graduate students of nuclear engineering, this work assumes a basic understanding of scientific and engineering principles and some familiarity with nuclear power reactors
Author: National Research Council (U.S.). Committee on Lessons Learned from the Fukushima Nuclear Accident for Improving Safety and Security of U.S. Nuclear Plants
The March 11, 2011, Great East Japan Earthquake and tsunami sparked a humanitarian disaster in northeastern Japan. They were responsible for more than 15,900 deaths and 2,600 missing persons as well as physical infrastructure damages exceeding $200 billion. The earthquake and tsunami also initiated a severe nuclear accident at the Fukushima Daiichi Nuclear Power Station. Three of the six reactors at the plant sustained severe core damage and released hydrogen and radioactive materials. Explosion of the released hydrogen damaged three reactor buildings and impeded onsite emergency response efforts. The accident prompted widespread evacuations of local populations, large economic losses, and the eventual shutdown of all nuclear power plants in Japan. "Lessons Learned from the Fukushima Nuclear Accident for Improving Safety and Security of U.S. Nuclear Plants" is a study of the Fukushima Daiichi accident. This report examines the causes of the crisis, the performance of safety systems at the plant, and the responses of its operators following the earthquake and tsunami. The report then considers the lessons that can be learned and their implications for U.S. safety and storage of spent nuclear fuel and high-level waste, commercial nuclear reactor safety and security regulations, and design improvements. "Lessons Learned" makes recommendations to improve plant systems, resources, and operator training to enable effective ad hoc responses to severe accidents. This report's recommendations to incorporate modern risk concepts into safety regulations and improve the nuclear safety culture will help the industry prepare for events that could challenge the design of plant structures and lead to a loss of critical safety functions. In providing a broad-scope, high-level examination of the accident, "Lessons Learned" is meant to complement earlier evaluations by industry and regulators. This in-depth review will be an essential resource for the nuclear power industry, policy makers, and anyone interested in the state of U.S. preparedness and response in the face of crisis situations.
This Safety Guide provides recommendations and guidance on how to meet the requirements established in Specific Safety Requirements No. SSR-2/1 and in General Safety Requirements No. GSR Part 4 for the identification of structures, systems and components (SSCs) important to safety in nuclear power plants and for their classification on the basis of their function and safety significance. This Safety Guide is intended primarily for use by organizations involved in the design of nuclear power plants, as well as by regulatory bodies and their technical support organizations. The Safety Guide can also be applied to other nuclear installations subject to appropriate adjustments relevant to the specific design of the type of the facility being considered.
This publication makes recommendations concerning safety features for incorporation into the design of the reactor core for a nuclear power plant, taking account of recent developments in the design of the reactor core and including guidance on general and specific design considerations. It supersedes IAEA Safety Series No. 50-SG-D14.
This book is a collection of essays focused on the Gordian knot of our time, the closely coupled problems of energy poverty for billions of humans, and global warming for all humans. The central thesis of the book in that nuclear power is not only the only solution, it is a highly desirable solution, cheaper, safer, less intrusive on nature than all the alternatives.
Deterministic safety analysis is an essential component of safety assessment, particularly for safety demonstration of the design of nuclear power plants (NPPs). The objective of deterministic safety analysis is to confirm that safety functions can be fulfilled and that the necessary structures, systems and components, in combination with operator actions, are effective in keeping the releases of radioactive material from the plant below acceptable limits. Deterministic safety analysis, supplemented by further specific information and analysis, including probabilistic safety analysis, is also intended to demonstrate that the source term and the potential radiological consequences of different plant states are acceptable, and that the possibility of certain conditions arising that could lead to an early or a large radioactive release can be considered as 'practically eliminated'. The publication has been updated to maintain consistency with current IAEA safety requirements and to reflect lessons from the Fukushima Daiichi accident. It takes into account current practices and experience from deterministic safety analyses for NPPs being performed around the world.