This book, first published in 2002, is a graduate-level text on numerical weather prediction, including atmospheric modeling, data assimilation and predictability.
This book, first published in 2002, is a graduate-level text on numerical weather prediction, including atmospheric modeling, data assimilation and predictability.
This textbook provides a comprehensive yet accessible treatment of weather and climate prediction, for graduate students, researchers and professionals. It teaches the strengths, weaknesses and best practices for the use of atmospheric models. It is ideal for the many scientists who use such models across a wide variety of applications. The book describes the different numerical methods, data assimilation, ensemble methods, predictability, land-surface modeling, climate modeling and downscaling, computational fluid-dynamics models, experimental designs in model-based research, verification methods, operational prediction, and special applications such as air-quality modeling and flood prediction. This volume will satisfy everyone who needs to know about atmospheric modeling for use in research or operations. It is ideal both as a textbook for a course on weather and climate prediction and as a reference text for researchers and professionals from a range of backgrounds: atmospheric science, meteorology, climatology, environmental science, geography, and geophysical fluid mechanics/dynamics.
Numerical models have become essential tools in environmental science, particularly in weather forecasting and climate prediction. This book provides a comprehensive overview of the techniques used in these fields, with emphasis on the design of the most recent numerical models of the atmosphere. It presents a short history of numerical weather prediction and its evolution, before describing the various model equations and how to solve them numerically. It outlines the main elements of a meteorological forecast suite, and the theory is illustrated throughout with practical examples of operational models and parameterizations of physical processes. This book is founded on the author's many years of experience, as a scientist at Météo-France and teaching university-level courses. It is a practical and accessible textbook for graduate courses and a handy resource for researchers and professionals in atmospheric physics, meteorology and climatology, as well as the related disciplines of fluid dynamics, hydrology and oceanography.
This textbook provides a comprehensive yet accessible treatment of weather and climate prediction, for graduate students, researchers and professionals. It teaches the strengths, weaknesses and best practices for the use of atmospheric models. It is ideal for the many scientists who use such models across a wide variety of applications. The book describes the different numerical methods, data assimilation, ensemble methods, predictability, land-surface modeling, climate modeling and downscaling, computational fluid-dynamics models, experimental designs in model-based research, verification methods, operational prediction, and special applications such as air-quality modeling and flood prediction. This volume will satisfy everyone who needs to know about atmospheric modeling for use in research or operations. It is ideal both as a textbook for a course on weather and climate prediction and as a reference text for researchers and professionals from a range of backgrounds: atmospheric science, meteorology, climatology, environmental science, geography, and geophysical fluid mechanics/dynamics.
The topic of predictability in weather and climate has advanced significantly in recent years, both in understanding the phenomena that affect weather and climate and in techniques used to model and forecast them. This book, first published in 2006, brings together some of the world's leading experts on predicting weather and climate. It addresses predictability from the theoretical to the practical, on timescales from days to decades. Topics such as the predictability of weather phenomena, coupled ocean-atmosphere systems and anthropogenic climate change are among those included. Ensemble systems for forecasting predictability are discussed extensively. Ed Lorenz, father of chaos theory, makes a contribution to theoretical analysis with a previously unpublished paper. This well-balanced volume will be a valuable resource for many years. High-calibre chapter authors and extensive subject coverage make it valuable to people with an interest in weather and climate forecasting and environmental science, from graduate students to researchers.
More accurate forecasts of climate conditions over time periods of weeks to a few years could help people plan agricultural activities, mitigate drought, and manage energy resources, amongst other activities; however, current forecast systems have limited ability on these time- scales. Models for such climate forecasts must take into account complex interactions among the ocean, atmosphere, and land surface. Such processes can be difficult to represent realistically. To improve the quality of forecasts, this book makes recommendations about the development of the tools used in forecasting and about specific research goals for improving understanding of sources of predictability. To improve the accessibility of these forecasts to decision-makers and researchers, this book also suggests best practices to improve how forecasts are made and disseminated.
Intended to fill a void in the atmospheric science literature, this self-contained text outlines the physical and mathematical basis of all aspects of atmospheric analysis as well as topics important in several other fields outside of it, including atmospheric dynamics and statistics.
Uncertainties in Numerical Weather Prediction is a comprehensive work on the most current understandings of uncertainties and predictability in numerical simulations of the atmosphere. It provides general knowledge on all aspects of uncertainties in the weather prediction models in a single, easy to use reference. The book illustrates particular uncertainties in observations and data assimilation, as well as the errors associated with numerical integration methods. Stochastic methods in parameterization of subgrid processes are also assessed, as are uncertainties associated with surface-atmosphere exchange, orographic flows and processes in the atmospheric boundary layer. Through a better understanding of the uncertainties to watch for, readers will be able to produce more precise and accurate forecasts. This is an essential work for anyone who wants to improve the accuracy of weather and climate forecasting and interested parties developing tools to enhance the quality of such forecasts. Provides a comprehensive overview of the state of numerical weather prediction at spatial scales, from hundreds of meters, to thousands of kilometers Focuses on short-term 1-15 day atmospheric predictions, with some coverage appropriate for longer-term forecasts Includes references to climate prediction models to allow applications of these techniques for climate simulations