Atmospheres and Oceans on Computers

Atmospheres and Oceans on Computers

Author: Lars Petter Røed

Publisher: Springer

Published: 2018-09-04

Total Pages: 293

ISBN-13: 3319938649

DOWNLOAD EBOOK

This textbook introduces step by step the basic numerical methods to solve the equations governing the motion of the atmosphere and ocean, and describes how to develop a set of corresponding instructions for the computer as part of a code. Today's computers are powerful enough to allow 7-day forecasts within hours, and modern teaching of the subject requires a combination of theoretical and computational approaches. The presentation is aimed at beginning graduate students intending to become forecasters or researchers, that is, users of existing models or model developers. However, model developers must be well versed in the underlying physics as well as in numerical methods. Thus, while some of the topics discussed in the modeling of the atmosphere and ocean are more advanced, the book ensures that the gap between those scientists who analyze results from model simulations and observations and those who work with the inner works of the model does not widen further. In this spirit, the course presents methods whereby important balance equations in oceanography and meteorology, namely the advection-diffusion equation and the shallow water equations on a rotating Earth, can be solved by numerical means with little prior knowledge. The numerical focus is on the finite-difference (FD) methods, and although more powerful methods exist, the simplicity of FD makes it ideal as a pedagogical introduction to the subject. The book also includes suitable exercises and computer problems.


Atmospheric and Oceanic Fluid Dynamics

Atmospheric and Oceanic Fluid Dynamics

Author: Geoffrey K. Vallis

Publisher: Cambridge University Press

Published: 2006-11-06

Total Pages: 772

ISBN-13: 1139459961

DOWNLOAD EBOOK

Fluid dynamics is fundamental to our understanding of the atmosphere and oceans. Although many of the same principles of fluid dynamics apply to both the atmosphere and oceans, textbooks tend to concentrate on the atmosphere, the ocean, or the theory of geophysical fluid dynamics (GFD). This textbook provides a comprehensive unified treatment of atmospheric and oceanic fluid dynamics. The book introduces the fundamentals of geophysical fluid dynamics, including rotation and stratification, vorticity and potential vorticity, and scaling and approximations. It discusses baroclinic and barotropic instabilities, wave-mean flow interactions and turbulence, and the general circulation of the atmosphere and ocean. Student problems and exercises are included at the end of each chapter. Atmospheric and Oceanic Fluid Dynamics: Fundamentals and Large-Scale Circulation will be an invaluable graduate textbook on advanced courses in GFD, meteorology, atmospheric science and oceanography, and an excellent review volume for researchers. Additional resources are available at www.cambridge.org/9780521849692.


Dynamics of the Tropical Atmosphere and Oceans

Dynamics of the Tropical Atmosphere and Oceans

Author: Peter J. Webster

Publisher: John Wiley & Sons

Published: 2020-06-08

Total Pages: 529

ISBN-13: 0470662565

DOWNLOAD EBOOK

This book presents a unique and comprehensive view of the fundamental dynamical and thermodynamic principles underlying the large circulations of the coupled ocean-atmosphere system Dynamics of The Tropical Atmosphere and Oceans provides a detailed description of macroscale tropical circulation systems such as the monsoon, the Hadley and Walker Circulations, El Niño, and the tropical ocean warm pool. These macroscale circulations interact with a myriad of higher frequency systems, ranging from convective cloud systems to migrating equatorial waves that attend the low-frequency background flow. Towards understanding and predicting these circulation systems. A comprehensive overview of the dynamics and thermodynamics of large-scale tropical atmosphere and oceans is presented using both a “reductionist” and “holistic” perspectives of the coupled tropical system. The reductionist perspective provides a detailed description of the individual elements of the ocean and atmospheric circulations. The physical nature of each component of the tropical circulation such as the Hadley and Walker circulations, the monsoon, the incursion of extratropical phenomena into the tropics, precipitation distributions, equatorial waves and disturbances described in detail. The holistic perspective provides a physical description of how the collection of the individual components produces the observed tropical weather and climate. How the collective tropical processes determine the tropical circulation and their role in global weather and climate is provided in a series of overlapping theoretical and modelling constructs. The structure of the book follows a graduated framework. Following a detailed description of tropical phenomenology, the reader is introduced to dynamical and thermodynamical constraints that guide the planetary climate and establish a critical role for the tropics. Equatorial wave theory is developed for simple and complex background flows, including the critical role played by moist processes. The manner in which the tropics and the extratropics interact is then described, followed by a discussion of the physics behind the subtropical and near-equatorial precipitation including arid regions. The El Niño phenomena and the monsoon circulations are discussed, including their covariance and predictability. Finally, the changing structure of the tropics is discussed in terms of the extent of the tropical ocean warm pool and its relationship to the intensity of global convection and climate change. Dynamics of the Tropical Atmosphere and Oceans is aimed at advanced undergraduate and early career graduate students. It also serves as an excellent general reference book for scientists interested in tropical circulations and their relationship with the broader climate system.


Atmosphere, Clouds, and Climate

Atmosphere, Clouds, and Climate

Author: David Randall

Publisher: Princeton University Press

Published: 2012-04-29

Total Pages: 288

ISBN-13: 1400842778

DOWNLOAD EBOOK

An essential primer on atmospheric processes and their important role in the climate system The atmosphere is critical to climate change. It can amplify shifts in the climate system, and also mitigate them. This primer offers a short, reader-friendly introduction to these atmospheric processes and how they work, written by a leading expert on the subject. Giving readers an overview of key atmospheric processes, David Randall looks at how our climate system receives energy from the sun and sheds it by emitting infrared radiation back into space. The atmosphere regulates these radiative energy flows and transports energy through weather systems such as thunderstorms, monsoons, hurricanes, and winter storms. Randall explains how these processes work, and also how precipitation, cloud formation, and other phase changes of water strongly influence weather and climate. He discusses how atmospheric feedbacks affect climate change, how the large-scale atmospheric circulation works, how predicting the weather and the climate are fundamentally different challenges, and much more. This is the ideal introduction for students and nonspecialists. No prior experience in atmospheric science is needed, only basic college physics. Authoritative and concise, Atmosphere, Clouds, and Climate features a glossary of terms, suggestions for further reading, and easy-to-follow explanations of a few key equations. This accessible primer is the essential introduction to atmospheric processes and the vital role they play in our climate system.


Climate and the Oceans

Climate and the Oceans

Author: Geoffrey K. Vallis

Publisher: Princeton University Press

Published: 2012

Total Pages: 245

ISBN-13: 0691150281

DOWNLOAD EBOOK

Explores climate and oceans, providing a look at the basics of climate, a descriptive overview of the oceans, a brief introduction to dynamics, and coverage of other related topics.


The Atmospheric Sciences

The Atmospheric Sciences

Author: Board on Atmospheric Sciences and Climate

Publisher: National Academies Press

Published: 1998-11-05

Total Pages: 424

ISBN-13: 0309517656

DOWNLOAD EBOOK

Technology has propelled the atmospheric sciences from a fledgling discipline to a global enterprise. Findings in this field shape a broad spectrum of decisions--what to wear outdoors, whether aircraft should fly, how to deal with the issue of climate change, and more. This book presents a comprehensive assessment of the atmospheric sciences and offers a vision for the future and a range of recommendations for federal authorities, the scientific community, and education administrators. How does atmospheric science contribute to national well-being? In the context of this question, the panel identifies imperatives in scientific observation, recommends directions for modeling and forecasting research, and examines management issues, including the growing problem of weather data availability. Five subdisciplines--physics, chemistry, dynamics and weather forecasting, upper atmosphere and near-earth space physics, climate and climate change--and their status as the science enters the twenty-first century are examined in detail, including recommendations for research. This readable book will be of interest to public-sector policy framers and private-sector decisionmakers as well as researchers, educators, and students in the atmospheric sciences.


Ocean Dynamics and the Carbon Cycle

Ocean Dynamics and the Carbon Cycle

Author: Richard G. Williams

Publisher: Cambridge University Press

Published: 2011-07-14

Total Pages: 433

ISBN-13: 1139496778

DOWNLOAD EBOOK

This textbook for advanced undergraduate and graduate students presents a multidisciplinary approach to understanding ocean circulation and how it drives and controls marine biogeochemistry and biological productivity at a global scale. Background chapters on ocean physics, chemistry and biology provide students with the tools to examine the range of large-scale physical and dynamic phenomena that control the ocean carbon cycle and its interaction with the atmosphere. Throughout the text observational data is integrated with basic physical theory to address cutting-edge research questions in ocean biogeochemistry. Simple theoretical models, data plots and schematic illustrations summarise key results and connect the physical theory to real observations. Advanced mathematics is provided in boxes and appendices where it can be drawn on to assist with the worked examples and homework exercises available online. Further reading lists for each chapter and a comprehensive glossary provide students and instructors with a complete learning package.


A Vast Machine

A Vast Machine

Author: Paul N. Edwards

Publisher: MIT Press

Published: 2010-03-12

Total Pages: 547

ISBN-13: 0262290715

DOWNLOAD EBOOK

The science behind global warming, and its history: how scientists learned to understand the atmosphere, to measure it, to trace its past, and to model its future. Global warming skeptics often fall back on the argument that the scientific case for global warming is all model predictions, nothing but simulation; they warn us that we need to wait for real data, “sound science.” In A Vast Machine Paul Edwards has news for these skeptics: without models, there are no data. Today, no collection of signals or observations—even from satellites, which can “see” the whole planet with a single instrument—becomes global in time and space without passing through a series of data models. Everything we know about the world's climate we know through models. Edwards offers an engaging and innovative history of how scientists learned to understand the atmosphere—to measure it, trace its past, and model its future.