The atlas contains an entry for each unique zeolite framework type. The term zeolite framework refers to a corner-sharing network of tetrahedrally coordinated atoms. This 5th edition is again an updated version of the previous compilation, and the number of entries has risen significantly to 133.
Zeolite scientists, whether they are working in synthesis, catalysis, characterization or application development, use the Atlas of Zeolite Framework Types as a reference. It describes the main features of all of the confirmed zeolite framework structures, and gives references to the relevant primary structural literature. Since the last edition 34 more framwork types have been approved and are described in this new edition. A further new feature will be that characteristic building units will be listed for each of the framework types.Zeolites and their analogs are used as desiccants, as water softeners, as shape-selective acid catalysts, as molecular sieves, as concentrators of radioactive isotopes, as blood clotting agents, and even as additives to animal feeds. Recently, their suitability as hosts for nanometer spacing of atomic clusters has also been demonstrated. These diverse applications are a reflection of the fascinating structures of these microporous materials. Each time a new zeolite framework structure is reported, it is examined by the Structure Commission of the International Zeolite Association (IZA-SC), and if it is found to be unique and to conform to the IZA-SC's definition of a zeolite, it is assigned a 3-letter framework type code. This code is part of the official IUPAC nomenclature for microporous materials. The Atlas of Zeolite Framework Types is essentially a compilation of data for each of these confirmed framework types. These data include a stereo drawing showing the framework connectivity, features that characterize the idealized framework structure, a list of materials with this framework type, information on the type material that was used to establish the framework type, and stereo drawings of the pore openings of the type material. - Clear stereo drawings of each of the framework types - Description of the features of the framework type, allowing readers to quickly see if the framework type is suitable to their needs - References to isotypic materials, readers can quickly identify related materials and consult the appropriate reference
This compendium describes all known zeolite framework types. The first part gives a pictorial description of how the framework can be built using periodic building units (PerBUs). The PerBUs are built from smaller units composed of a limited number of T-atoms (such as Si, Al, P, Ga, B, Be etc.) by applying simple operation(s) to the smaller unit, e.g. translation, rotation. The zeolite framework types are analysed in terms of these component PerBUs. The second part covers the larger cages, cavities and/or channels in the zeolite framework together with the framework type codes (FTCs) in which they appear. In addition, two appendices are included for easy-referencing. Two appendices are added. The first giving a survey of cages as type characteristics with their FTCs. The second summarizing those channels and cavities that appear in more than one framework type. The Compendium of Zeolite Framework Types contains complementary information to the data in the "Atlas of Zeolite Framework Types" (Baerlocher et al (2001) Elsevier, London). The latter contains the topological symmetry, unit cell data and pore dimensions.* How zeolites can be built using simple building units* Description of the channels and cages in all zeolites known to date* Survey of those channels and cages that appear in more than one zeolite
Zeolite synthesis is an active field of research. As long as this continues, new phases will be discovered and new techniques for preparing existing phases will appear. This edition of Verified Synthesis of Zeolitic Materials contains all the recipes from the first edition plus 24 new recipes. Five new introductory articles have been included plus those from the first edition, some of which have been substantially revised. The XRD patterns have been recorded using different instrument settings from those in the first edition and are intended to conform to typical X-ray diffraction practice. In most cases, only the XRD pattern for the productas synthesised is printed here. The exceptions are those phases which show marked changes in the XRD pattern upon calcination.
The Encyclopedia of Mineralogy provides comprehensive, basic treatment of the science of mineralogy. More than 140 articles by internationally known scholars and research workers describe specific areas of mineralogical interest, and a glossary of 3000 entries defines all valid mineral species and many related mineral names. In addition to traditional topics - descriptions of major structural groups, methods of mineral analysis, and the paragenesis of mineral species - this volume embraces such subjects as asbestiform minerals, minerals found in caves and in living beings, and gems and gemology. It includes current data on the latest in our geological inventories - lunar minerals. It describes the properties, characteristics, and uses of industrial resources such as abrasive materials and Portland cement. A directory will guide traveling mineralogists to the major mineralogical museums of the world, with their special interests noted. Clear technical illustrations supplement the text throughout. To help the student and professional find particular information there are a comprehensive subject index, extensive cross-references of related topics (whether in this volume or others in the series), and reference lists to background information and detailed advanced treatment of all topics. The Encyclopedia of Mineralogy is a valuable reference and source for professionals in all geological sciences, for science teachers at all levels, for collectors and `rock hounds', and for all who are curious about the minerals on earth or those brought back from outer space.
This first book to offer a practical overview of zeolites and their commercial applications provides a practical examination of zeolites in three capacities. Edited by a globally recognized and acclaimed leader in the field with contributions from major industry experts, this handbook and ready reference introduces such novel separators as zeolite membranes and mixed matrix membranes. The first part of the book discusses the history and chemistry of zeolites, while the second section focuses on separation processes. The third and final section treats zeolites in the field of catalysis. The three sections are unified by an examination of how the unique properties of zeolites allow them to function in different capacities as an adsorbent, a membrane and as a catalyst, while also discussing their impact within the industry.
Zeolites form a family of minerals which have been known since the 18th century, but they remained a curiosity for scientists and collectors until 60 years ago, when their unique physicochemical properties attracted the attention of many researchers. In the past 30 years there has been an ex traordinary development in zeolite science; six International Conferences on Zeolites have been held every 3 years since 1967, and a large number of interesting contributions have been published in their proceedings. Many books, written either by individual authors or by several authors under a leading editor, have been published on these interesting silicate phases, but none has been devoted specifically to natural zeolites, even though this theme may be of interest not only to earth scientists, but also to chemists, as the in formation obtained from natural samples completes and in tegrates the characterization of many zeolites. We are trying to fill this gap on the basis of 20 years of research on natural zeolites, which we performed at the University of Modena together with many friends and colleagues. If it is in general difficult to write a scientific book with out upsetting somebody, this is particularly true for a book on natural crystals, because mineralogy is an interdisciplin ary science which covers some fields of physics, chemistry, it is almost impossible to meet every petrology, geology, and requirement.
In view of the substantial progress made in the last decade in the fields of zeolites and related materials it was decided to go for an extended 2nd Edition of "Introduction to Zeolite Science and Practice". Unfortunately - as often is the case - this process took more time than expected by the Editors.In the mean time some new texts on zeolites were issued. Nevertheless, the combination of data, discussion and dedication provided by the present book is a unique coverage of the field, in the opinion of the Editors.In the present Edition the number of chapters rose from 16-22. The contributions can be divided into three categories: updated chapters by the original authors, updated chapters by an expanded or new team of authors and completely new chapters. This 2nd Edition also contains new chapters on "Zeolite-based supramolecular assemblies" (by Dirk De Vos and Pierre Jacobs, experts in this area) and on "The use of bulky probe molecules" (by Paul Kunkeler, Roger Downing and one of the Editors).Finally, the super large pore zeolites and the fast growing area of ordered mesoporous materials are dealt with by Eelco Vogt, Charlie Kresge and and Jim Vartuli. The latter two authors belong to the discoverers of the M41S family of mesoporous materials.