Atlas of Finite Groups

Atlas of Finite Groups

Author: John Horton Conway

Publisher: Oxford University Press

Published: 1985

Total Pages: 252

ISBN-13: 9780198531999

DOWNLOAD EBOOK

This atlas covers groups from the families of the classification of finite simple groups. Recently updated incorporating corrections


Finite Simple Groups: Thirty Years of the Atlas and Beyond

Finite Simple Groups: Thirty Years of the Atlas and Beyond

Author: Manjul Bhargava

Publisher: American Mathematical Soc.

Published: 2017-07-24

Total Pages: 242

ISBN-13: 1470436787

DOWNLOAD EBOOK

Classification of Finite Simple Groups, one of the most monumental accomplishments of modern mathematics, was announced in 1983 with the proof completed in 2004. Since then, it has opened up a new and powerful strategy to approach and resolve many previously inaccessible problems in group theory, number theory, combinatorics, coding theory, algebraic geometry, and other areas of mathematics. This strategy crucially utilizes various information about finite simple groups, part of which is catalogued in the Atlas of Finite Groups (John H. Conway et al.), and in An Atlas of Brauer Characters (Christoph Jansen et al.). It is impossible to overestimate the roles of the Atlases and the related computer algebra systems in the everyday life of researchers in many areas of contemporary mathematics. The main objective of the conference was to discuss numerous applications of the Atlases and to explore recent developments and future directions of research, with focus on the interaction between computation and theory and applications to number theory and algebraic geometry. The papers in this volume are based on talks given at the conference. They present a comprehensive survey on current research in all of these fields.


The Classification of the Finite Simple Groups, Number 3

The Classification of the Finite Simple Groups, Number 3

Author: Daniel Gorenstein

Publisher: American Mathematical Soc.

Published: 1994

Total Pages: 446

ISBN-13: 9780821803912

DOWNLOAD EBOOK

Examines the internal structure of the finite simple groups of Lie type, the finite alternating groups, and 26 sporadic finite simple groups, as well as their analogues. Emphasis is on the structure of local subgroups and their relationships with one another, rather than development of an abstract theory of simple groups. A foundation is laid for the development of specific properties of K-groups to be used in the inductive proof of the classification theorem. Highlights include statements and proofs of the Breol-Tits and Curtis-Tits theorems, and material on centralizers of semisimple involutions in groups of Lie type. For graduate students and research mathematicians. Annotation copyrighted by Book News, Inc., Portland, OR


The Finite Simple Groups

The Finite Simple Groups

Author: Robert Wilson

Publisher: Springer Science & Business Media

Published: 2009-12-14

Total Pages: 310

ISBN-13: 1848009879

DOWNLOAD EBOOK

Thisbookisintendedasanintroductiontoallthe?nitesimplegroups.During themonumentalstruggletoclassifythe?nitesimplegroups(andindeedsince), a huge amount of information about these groups has been accumulated. Conveyingthisinformationtothenextgenerationofstudentsandresearchers, not to mention those who might wish to apply this knowledge, has become a major challenge. With the publication of the two volumes by Aschbacher and Smith [12, 13] in 2004 we can reasonably regard the proof of the Classi?cation Theorem for Finite Simple Groups (usually abbreviated CFSG) as complete. Thus it is timely to attempt an overview of all the (non-abelian) ?nite simple groups in one volume. For expository purposes it is convenient to divide them into four basic types, namely the alternating, classical, exceptional and sporadic groups. The study of alternating groups soon develops into the theory of per- tation groups, which is well served by the classic text of Wielandt [170]and more modern treatments such as the comprehensive introduction by Dixon and Mortimer [53] and more specialised texts such as that of Cameron [19].


Finite Simple Groups

Finite Simple Groups

Author: Daniel Gorenstein

Publisher: Springer Science & Business Media

Published: 2013-11-27

Total Pages: 339

ISBN-13: 1468484974

DOWNLOAD EBOOK

In February 1981, the classification of the finite simple groups (Dl)* was completed,t. * representing one of the most remarkable achievements in the history or mathematics. Involving the combined efforts of several hundred mathematicians from around the world over a period of 30 years, the full proof covered something between 5,000 and 10,000 journal pages, spread over 300 to 500 individual papers. The single result that, more than any other, opened up the field and foreshadowed the vastness of the full classification proof was the celebrated theorem of Walter Feit and John Thompson in 1962, which stated that every finite group of odd order (D2) is solvable (D3)-a statement expressi ble in a single line, yet its proof required a full 255-page issue of the Pacific 10urnal of Mathematics [93]. Soon thereafter, in 1965, came the first new sporadic simple group in over 100 years, the Zvonimir Janko group 1 , to further stimulate the 1 'To make the book as self-contained as possible. we are including definitions of various terms as they occur in the text. However. in order not to disrupt the continuity of the discussion. we have placed them at the end of the Introduction. We denote these definitions by (DI). (D2), (D3). etc.


Representation Theory of Finite Groups: a Guidebook

Representation Theory of Finite Groups: a Guidebook

Author: David A. Craven

Publisher: Springer Nature

Published: 2019-08-30

Total Pages: 297

ISBN-13: 3030217922

DOWNLOAD EBOOK

This book provides an accessible introduction to the state of the art of representation theory of finite groups. Starting from a basic level that is summarized at the start, the book proceeds to cover topics of current research interest, including open problems and conjectures. The central themes of the book are block theory and module theory of group representations, which are comprehensively surveyed with a full bibliography. The individual chapters cover a range of topics within the subject, from blocks with cyclic defect groups to representations of symmetric groups. Assuming only modest background knowledge at the level of a first graduate course in algebra, this guidebook, intended for students taking first steps in the field, will also provide a reference for more experienced researchers. Although no proofs are included, end-of-chapter exercises make it suitable for student seminars.


Finite Group Theory

Finite Group Theory

Author: I. Martin Isaacs

Publisher: American Mathematical Society

Published: 2023-01-24

Total Pages: 368

ISBN-13: 1470471604

DOWNLOAD EBOOK

The text begins with a review of group actions and Sylow theory. It includes semidirect products, the Schur–Zassenhaus theorem, the theory of commutators, coprime actions on groups, transfer theory, Frobenius groups, primitive and multiply transitive permutation groups, the simplicity of the PSL groups, the generalized Fitting subgroup and also Thompson's J-subgroup and his normal $p$-complement theorem. Topics that seldom (or never) appear in books are also covered. These include subnormality theory, a group-theoretic proof of Burnside's theorem about groups with order divisible by just two primes, the Wielandt automorphism tower theorem, Yoshida's transfer theorem, the “principal ideal theorem” of transfer theory and many smaller results that are not very well known. Proofs often contain original ideas, and they are given in complete detail. In many cases they are simpler than can be found elsewhere. The book is largely based on the author's lectures, and consequently, the style is friendly and somewhat informal. Finally, the book includes a large collection of problems at disparate levels of difficulty. These should enable students to practice group theory and not just read about it. Martin Isaacs is professor of mathematics at the University of Wisconsin, Madison. Over the years, he has received many teaching awards and is well known for his inspiring teaching and lecturing. He received the University of Wisconsin Distinguished Teaching Award in 1985, the Benjamin Smith Reynolds Teaching Award in 1989, and the Wisconsin Section MAA Teaching Award in 1993, to name only a few. He was also honored by being the selected MAA Pólya Lecturer in 2003–2005.


The Classification of Finite Simple Groups

The Classification of Finite Simple Groups

Author: Michael Aschbacher

Publisher: American Mathematical Soc.

Published: 2011

Total Pages: 362

ISBN-13: 0821853368

DOWNLOAD EBOOK

Provides an outline and modern overview of the classification of the finite simple groups. It primarily covers the 'even case', where the main groups arising are Lie-type (matrix) groups over a field of characteristic 2. The book thus completes a project begun by Daniel Gorenstein's 1983 book, which outlined the classification of groups of 'noncharacteristic 2 type'.