This Research Note contains papers presented at the SIAM 40th anniversary meeting organised by the editors and held in Los Angeles in 1992. The papers focus on new fundamental results in the theory of plates and shells, with particular emphasis on the treatment of different materials and the nonlinearities involved. Asymptotic methods, such as formal expansions, homogenization, and two-scale convergence, are analytical tools that pervade much of the research. Some of the papers are also concerned with existence results, especially for nonlinear problems, using various functional analytic methods.
A consistent theory for thin anisotropic layered structures is developed starting from asymptotic analysis of 3D equations in linear elasticity. The consideration is not restricted to the traditional boundary conditions along the faces of the structure expressed in terms of stresses, originating a new type of boundary value problems, which is not governed by the classical Kirchhoff-Love assumptions. More general boundary value problems, in particular related to elastic foundations are also studied.The general asymptotic approach is illustrated by a number of particular problems for elastic and thermoelastic beams and plates. For the latter, the validity of derived approximate theories is investigated by comparison with associated exact solution. The author also develops an asymptotic approach to dynamic analysis of layered media composed of thin layers motivated by modeling of engineering structures under seismic excitation.
Plate and shell theories experienced a renaissance in recent years. The potentials of smart materials, the challenges of adaptive structures, the demands of thin-film technologies and more on the one hand and the availability of newly developed mathematical tools, the tremendous increase in computer facilities and the improvement of commercial software packages on the other caused a reanimation of the scientific interest. In the present book the contributions of the participants of the EUROMECH Colloquium 444 "Critical Review of the Theories of Plates and Shells and New Applications" have been collected. The aim was to discuss the common roots of different plate and shell approaches, to review the current state of the art, and to develop future lines of research. Contributions were written by scientists with civil and mechanical engineering as well as mathematical and physical background.
This book commemorates the 75th birthday of Prof. George Jaiani – Georgia’s leading expert on shell theory. He is also well known outside Georgia for his individual approach to shell theory research and as an organizer of meetings, conferences and schools in the field. The collection of papers presented includes articles by scientists from various countries discussing the state of the art and new trends in the theory of shells, plates, and beams. Chapter 20 is available open access under a Creative Commons Attribution 4.0 International License via link.springer.com.
As an expert in structure and stress analysis, the author has written extensively on functionally graded materials (FGMs), nonlinear vibration and dynamic response of functionally graded material plates in thermal environments, buckling and postbuckling analysis of single-walled carbon nanotubes in thermal environments. This book provides a comprehensive overview of the author's works which include significant contributions to the postbuckling behavior of plates and shells under different loading and environmental conditions.This book comprises eight chapters. Each chapter contains adequate introductory material so that an engineering graduate who is familiar with basic understanding of plates and shells will be able to follow it.
Presenting recent principles of thin plate and shell theories, this book emphasizes novel analytical and numerical methods for solving linear and nonlinear plate and shell dilemmas, new theories for the design and analysis of thin plate-shell structures, and real-world numerical solutions, mechanics, and plate and shell models for engineering appli
The Mathematical Elasticity set contains three self-contained volumes that together provide the only modern treatise on elasticity. They introduce contemporary research on three-dimensional elasticity, the theory of plates, and the theory of shells. Each volume contains proofs, detailed surveys of all mathematical prerequisites, and many problems for teaching and self-study. An extended preface and extensive bibliography have been added to each volume to highlight the progress that has been made since the original publication. The first book, Three-Dimensional Elasticity, covers the modeling and mathematical analysis of nonlinear three-dimensional elasticity. In volume two, Theory of Plates, asymptotic methods provide a rigorous mathematical justification of the classical two-dimensional linear plate and shallow shell theories. The objective of Theory of Shells, the final volume, is to show how asymptotic methods provide a rigorous mathematical justification of the classical two-dimensional linear shell theories: membrane, generalized membrane, and flexural. These classic textbooks are for advanced undergraduates, first-year graduate students, and researchers in pure or applied mathematics or continuum mechanics. They are appropriate for courses in mathematical elasticity, theory of plates and shells, continuum mechanics, computational mechanics, and applied mathematics in general.
Shells are basic structural elements of modern technology. Examples of shell structures include automobile bodies, domes, water and oil tanks, pipelines, ship hulls, aircraft fuselages, turbine blades, laudspeaker cones, but also balloons, parachutes, biological membranes, a human skin, a bottle of wine or a beer can. This volume contains full texts of over 100 papers presented by specialists from over 20 countries at the 8th Conference "Shell Structures: Theory and Applications", 12-14 October, 2005 in Jurata (Poland). The aim of the meeting was to bring together scientists, designers, engineers and other specialists in shell structures in order to discuss important results and new ideas in this field. The goal is to pursue more accurate theoretical models, to develop more powerful and versatile methods of analysis, and to disseminate expertise in design and maintenance of shell structures. Among the authors there are many distinguished specialists of shell structures, including the authors of general lectures: I.V. Andrianov (Ukraine), V.A. Eremeyev (Russia), A. Ibrahimbegovic (France), P. Klosowski (Poland), B.H. Kröplin (Germany), E. Ramm (Germany), J.M. Rotter (UK) and D. Steigmann (USA). The subject area of the papers covers various theoretical models and numerical analyses of strength, dynamics, stability, optimization etc. of different types of shell structures, their design and maintenance, as well as modelling of some surface-related mechanical phenomena.
Intended for engineers who deal with vibrations of rods and shells in their everyday practice but who also wish to understand the subject from the mathematical point-of-view, the results contained here concerning high-frequency vibrations may be new to many. The book serves equally well as an advanced textbook, while remaining of interest to mathematicians who seek applications of the variational and asymptotic methods in elasticity and piezoelectricity. Only a minimum knowledge in advanced calculus and continuum mechanics is assumed on the part of the reader.
This text is a study of the asymptotic approximations of the 3-D dynamical equations of elasticity in the case of thin elastic shells of an arbitrary shape.