Lie Algebras and Lie Groups

Lie Algebras and Lie Groups

Author:

Publisher: American Mathematical Soc.

Published: 1955

Total Pages: 65

ISBN-13: 0821812149

DOWNLOAD EBOOK

The American Mathematical Society, with the financial support of the National Science Foundation, held its First Summer Mathematical Institute from June 20 to July 31, 1953. The topic chosen was Lie theory, twenty-nine mathematicians active in this area attended. The six-week period provided opportunity both for the interchange of ideas and for the subsequent shaping of ideas into theorems. The five papers present some results achieved by the participants.--Foreword.


Asymptotic and Computational Analysis

Asymptotic and Computational Analysis

Author: R. Wong

Publisher: CRC Press

Published: 2020-12-17

Total Pages: 782

ISBN-13: 1000154130

DOWNLOAD EBOOK

Papers presented at the International Symposium on Asymptotic and Computational Analysis, held June 1989, Winnipeg, Man., sponsored by the Dept. of Applied Mathematics, University of Manitoba and the Canadian Applied Mathematics Society.


Asymptotics and Special Functions

Asymptotics and Special Functions

Author: Frank Olver

Publisher: CRC Press

Published: 1997-01-24

Total Pages: 591

ISBN-13: 1439864543

DOWNLOAD EBOOK

A classic reference, intended for graduate students mathematicians, physicists, and engineers, this book can be used both as the basis for instructional courses and as a reference tool.


Asymptotics and Special Functions

Asymptotics and Special Functions

Author: F. W. J. Olver

Publisher: Academic Press

Published: 2014-05-10

Total Pages: 589

ISBN-13: 148326744X

DOWNLOAD EBOOK

Asymptotics and Special Functions provides a comprehensive introduction to two important topics in classical analysis: asymptotics and special functions. The integrals of a real variable and contour integrals are discussed, along with the Liouville-Green approximation and connection formulas for solutions of differential equations. Differential equations with regular singularities are also considered, with emphasis on hypergeometric and Legendre functions. Comprised of 14 chapters, this volume begins with an introduction to the basic concepts and definitions of asymptotic analysis and special functions, followed by a discussion on asymptotic theories of definite integrals containing a parameter. Contour integrals as well as integrals of a real variable are described. Subsequent chapters deal with the analytic theory of ordinary differential equations; differential equations with regular and irregular singularities; sums and sequences; and connection formulas for solutions of differential equations. The book concludes with an evaluation of methods used in estimating (as opposed to bounding) errors in asymptotic approximations and expansions. This monograph is intended for graduate mathematicians, physicists, and engineers.


Introduction to Mathematical Physics

Introduction to Mathematical Physics

Author: Michael T. Vaughn

Publisher: John Wiley & Sons

Published: 2008-09-26

Total Pages: 543

ISBN-13: 3527618864

DOWNLOAD EBOOK

A comprehensive survey of all the mathematical methods that should be available to graduate students in physics. In addition to the usual topics of analysis, such as infinite series, functions of a complex variable and some differential equations as well as linear vector spaces, this book includes a more extensive discussion of group theory than can be found in other current textbooks. The main feature of this textbook is its extensive treatment of geometrical methods as applied to physics. With its introduction of differentiable manifolds and a discussion of vectors and forms on such manifolds as part of a first-year graduate course in mathematical methods, the text allows students to grasp at an early stage the contemporary literature on dynamical systems, solitons and related topological solutions to field equations, gauge theories, gravitational theory, and even string theory. Free solutions manual available for lecturers at www.wiley-vch.de/supplements/.


Introduction to Asymptotics and Special Functions

Introduction to Asymptotics and Special Functions

Author: F. W. J. Olver

Publisher: Academic Press

Published: 2014-05-10

Total Pages: 312

ISBN-13: 1483267083

DOWNLOAD EBOOK

Introduction to Asymptotics and Special Functions is a comprehensive introduction to two important topics in classical analysis: asymptotics and special functions. The integrals of a real variable are discussed, along with contour integrals and differential equations with regular and irregular singularities. The Liouville-Green approximation is also considered. Comprised of seven chapters, this volume begins with an overview of the basic concepts and definitions of asymptotic analysis and special functions, followed by a discussion on integrals of a real variable. Contour integrals are then examined, paying particular attention to Laplace integrals with a complex parameter and Bessel functions of large argument and order. Subsequent chapters focus on differential equations having regular and irregular singularities, with emphasis on Legendre functions as well as Bessel and confluent hypergeometric functions. A chapter devoted to the Liouville-Green approximation tackles asymptotic properties with respect to parameters and to the independent variable, eigenvalue problems, and theorems on singular integral equations. This monograph is intended for students needing only an introductory course to asymptotics and special functions.