Theory and Algorithms for Linear Optimization

Theory and Algorithms for Linear Optimization

Author: Cornelis Roos

Publisher:

Published: 1997-03-04

Total Pages: 520

ISBN-13:

DOWNLOAD EBOOK

The approach to LO in this book is new in many aspects. In particular the IPM based development of duality theory is surprisingly elegant. The algorithmic parts of the book contain a complete discussion of many algorithmic variants, including predictor-corrector methods, partial updating, higher order methods and sensitivity and parametric analysis.


Interior Point Methods for Linear Optimization

Interior Point Methods for Linear Optimization

Author: Cornelis Roos

Publisher: Springer Science & Business Media

Published: 2006-02-08

Total Pages: 501

ISBN-13: 0387263799

DOWNLOAD EBOOK

The era of interior point methods (IPMs) was initiated by N. Karmarkar’s 1984 paper, which triggered turbulent research and reshaped almost all areas of optimization theory and computational practice. This book offers comprehensive coverage of IPMs. It details the main results of more than a decade of IPM research. Numerous exercises are provided to aid in understanding the material.


Interior Point Methods of Mathematical Programming

Interior Point Methods of Mathematical Programming

Author: Tamás Terlaky

Publisher: Springer Science & Business Media

Published: 2013-12-01

Total Pages: 544

ISBN-13: 1461334497

DOWNLOAD EBOOK

One has to make everything as simple as possible but, never more simple. Albert Einstein Discovery consists of seeing what every body has seen and thinking what nobody has thought. Albert S. ent_Gyorgy; The primary goal of this book is to provide an introduction to the theory of Interior Point Methods (IPMs) in Mathematical Programming. At the same time, we try to present a quick overview of the impact of extensions of IPMs on smooth nonlinear optimization and to demonstrate the potential of IPMs for solving difficult practical problems. The Simplex Method has dominated the theory and practice of mathematical pro gramming since 1947 when Dantzig discovered it. In the fifties and sixties several attempts were made to develop alternative solution methods. At that time the prin cipal base of interior point methods was also developed, for example in the work of Frisch (1955), Caroll (1961), Huard (1967), Fiacco and McCormick (1968) and Dikin (1967). In 1972 Klee and Minty made explicit that in the worst case some variants of the simplex method may require an exponential amount of work to solve Linear Programming (LP) problems. This was at the time when complexity theory became a topic of great interest. People started to classify mathematical programming prob lems as efficiently (in polynomial time) solvable and as difficult (NP-hard) problems. For a while it remained open whether LP was solvable in polynomial time or not. The break-through resolution ofthis problem was obtained by Khachijan (1989).


Interior Point Algorithms

Interior Point Algorithms

Author: Yinyu Ye

Publisher: John Wiley & Sons

Published: 2011-10-11

Total Pages: 440

ISBN-13: 1118030958

DOWNLOAD EBOOK

The first comprehensive review of the theory and practice of one oftoday's most powerful optimization techniques. The explosive growth of research into and development of interiorpoint algorithms over the past two decades has significantlyimproved the complexity of linear programming and yielded some oftoday's most sophisticated computing techniques. This book offers acomprehensive and thorough treatment of the theory, analysis, andimplementation of this powerful computational tool. Interior Point Algorithms provides detailed coverage of all basicand advanced aspects of the subject. Beginning with an overview offundamental mathematical procedures, Professor Yinyu Ye movesswiftly on to in-depth explorations of numerous computationalproblems and the algorithms that have been developed to solve them.An indispensable text/reference for students and researchers inapplied mathematics, computer science, operations research,management science, and engineering, Interior Point Algorithms: * Derives various complexity results for linear and convexprogramming * Emphasizes interior point geometry and potential theory * Covers state-of-the-art results for extension, implementation,and other cutting-edge computational techniques * Explores the hottest new research topics, including nonlinearprogramming and nonconvex optimization.


Primal-dual Interior-Point Methods

Primal-dual Interior-Point Methods

Author: Stephen J. Wright

Publisher: SIAM

Published: 1997-01-01

Total Pages: 309

ISBN-13: 9781611971453

DOWNLOAD EBOOK

In the past decade, primal-dual algorithms have emerged as the most important and useful algorithms from the interior-point class. This book presents the major primal-dual algorithms for linear programming in straightforward terms. A thorough description of the theoretical properties of these methods is given, as are a discussion of practical and computational aspects and a summary of current software. This is an excellent, timely, and well-written work. The major primal-dual algorithms covered in this book are path-following algorithms (short- and long-step, predictor-corrector), potential-reduction algorithms, and infeasible-interior-point algorithms. A unified treatment of superlinear convergence, finite termination, and detection of infeasible problems is presented. Issues relevant to practical implementation are also discussed, including sparse linear algebra and a complete specification of Mehrotra's predictor-corrector algorithm. Also treated are extensions of primal-dual algorithms to more general problems such as monotone complementarity, semidefinite programming, and general convex programming problems.


Interior-point Polynomial Algorithms in Convex Programming

Interior-point Polynomial Algorithms in Convex Programming

Author: Yurii Nesterov

Publisher: SIAM

Published: 1994-01-01

Total Pages: 414

ISBN-13: 9781611970791

DOWNLOAD EBOOK

Specialists working in the areas of optimization, mathematical programming, or control theory will find this book invaluable for studying interior-point methods for linear and quadratic programming, polynomial-time methods for nonlinear convex programming, and efficient computational methods for control problems and variational inequalities. A background in linear algebra and mathematical programming is necessary to understand the book. The detailed proofs and lack of "numerical examples" might suggest that the book is of limited value to the reader interested in the practical aspects of convex optimization, but nothing could be further from the truth. An entire chapter is devoted to potential reduction methods precisely because of their great efficiency in practice.


Primal-Dual Interior-Point Methods

Primal-Dual Interior-Point Methods

Author: Stephen J. Wright

Publisher: SIAM

Published: 1997-01-01

Total Pages: 293

ISBN-13: 089871382X

DOWNLOAD EBOOK

Presents the major primal-dual algorithms for linear programming. A thorough, straightforward description of the theoretical properties of these methods.


Handbook on Semidefinite, Conic and Polynomial Optimization

Handbook on Semidefinite, Conic and Polynomial Optimization

Author: Miguel F. Anjos

Publisher: Springer Science & Business Media

Published: 2011-11-19

Total Pages: 955

ISBN-13: 1461407699

DOWNLOAD EBOOK

Semidefinite and conic optimization is a major and thriving research area within the optimization community. Although semidefinite optimization has been studied (under different names) since at least the 1940s, its importance grew immensely during the 1990s after polynomial-time interior-point methods for linear optimization were extended to solve semidefinite optimization problems. Since the beginning of the 21st century, not only has research into semidefinite and conic optimization continued unabated, but also a fruitful interaction has developed with algebraic geometry through the close connections between semidefinite matrices and polynomial optimization. This has brought about important new results and led to an even higher level of research activity. This Handbook on Semidefinite, Conic and Polynomial Optimization provides the reader with a snapshot of the state-of-the-art in the growing and mutually enriching areas of semidefinite optimization, conic optimization, and polynomial optimization. It contains a compendium of the recent research activity that has taken place in these thrilling areas, and will appeal to doctoral students, young graduates, and experienced researchers alike. The Handbook’s thirty-one chapters are organized into four parts: Theory, covering significant theoretical developments as well as the interactions between conic optimization and polynomial optimization; Algorithms, documenting the directions of current algorithmic development; Software, providing an overview of the state-of-the-art; Applications, dealing with the application areas where semidefinite and conic optimization has made a significant impact in recent years.


Asymptotics and Borel Summability

Asymptotics and Borel Summability

Author: Ovidiu Costin

Publisher: CRC Press

Published: 2008-12-04

Total Pages: 266

ISBN-13: 1420070320

DOWNLOAD EBOOK

Incorporating substantial developments from the last thirty years into one resource, Asymptotics and Borel Summability provides a self-contained introduction to asymptotic analysis with special emphasis on topics not covered in traditional asymptotics books. The author explains basic ideas, concepts, and methods of generalized Borel summability, tr