"More than forty chapters detail our current astronomical, compositional, geological, and geophysical knowledge of asteroids, as well as their unique physical processes and interrelationships with comets and meteorites"--Provided by publisher.
A unique, wide-ranging examination of asteroid exploration and our future in space Human travel into space is an enormously expensive and unforgiving endeavor. So why go? In this accessible and authoritative book, astrophysicist Martin Elvis argues that the answer is asteroid exploration, for the strong motives of love, fear, and greed. Elvis’s personal motivation is one of scientific love—asteroid investigations may teach us about the composition of the solar system and the origins of life. A more compelling reason may be fear—of a dinosaur killer–sized asteroid hitting our planet. Finally, Elvis maintains, we should consider greed: asteroids likely hold vast riches, such as large platinum deposits, and mining them could provide both a new industry and a funding source for bolder space exploration. Elvis explains how each motive can be satisfied, and how they help one another. From the origins of life, to “space billiards,” and space sports, Elvis looks at how asteroids may be used in the not-so-distant future.
Primitive Meteorites and Asteroids: Physical, Chemical, and Spectroscopic Observations Paving the Way to Exploration covers the physical, chemical and spectroscopic aspects of asteroids, providing important data and research on carbonaceous chondrites and primitive meteorites. This information is crucial to the success of missions to parent bodies, thus contributing to an understanding of the early solar system. The book offers an interdisciplinary perspective relevant to many fields of planetary science, as well as cosmochemistry, planetary astronomy, astrobiology, geology and space engineering. Including contributions from planetary and missions scientists worldwide, the book collects the fundamental knowledge and cutting-edge research on carbonaceous chondrites and their parent bodies into one accessible resource, thus contributing to the future of space exploration. - Presents the most current data and information on the mission-relevant characteristics of primitive asteroids - Addresses the physical, chemical and spectral characteristics of carbonaceous chondritic meteorites and the bearings on successful exploration of their parent asteroids - Includes chapters on geotechnical properties and resource extraction
Describes in simple terms the meteors, comets, and asteroids that are part of our solar system and discusses the various theories concerning their origin and their effect on life on Earth.
One of the top scientists in the field of asteroid hunting explains how, for the first time, humanity could have the knowledge to prevent a devastating asteroid impact. --
Grounded in historical studies of asteroids from the nineteenth century, Asteroids is a fully up-to-date view of these remarkable objects. Without resorting to any technical diagrams or mathematics, Clifford J. Cunningham shows that asteroids are not just rocks in space, but key to understanding the life and death on Earth of both animals and humans. From space missions to the asteroids’ starring role in literature and film, Cunningham precisely and entertainingly looks at the place asteroids have in our solar system and how they affect our daily lives.
With the bulk of asteroids floating in space between the orbits of Mars and Jupiter, astronomers puzzle over where these rocks came from. Are they the remnants of a planet? Excess not used in the formation of the Solar System? Nothing more than random bits of debris? The location of the belt makes for a quasi-barrier separating the inner from the outer planets. Perhaps asteroids were meant to discourage human space exploration. NASA has sent missions to explore the asteroid belt and the rocks themselves, and those missions have yielded some interesting observations on the composition of the asteroids but no definitive answer as to their origin. Earth-based tools such as telescopes and satellites also contribute to asteroid research but cannot plumb the depths behind these varied chunks of flotsam. Presented in this book is a list of carefully chosen abstracts and citations of relevant literature about asteroids and the research into them. Prior to this listing, though, comes an overview of the nature of the asteroids and what we know now about them and what we hope to discover in the future. lifeless but mysterious rocks inhabiting the solar system. To conclude, easy access is provided through author, title, and subject indexes.
From earliest times, humans have wondered about the sky above them and have studied all visible objects. People began to identify differences between stars and planets, and as technology advanced with telescopes and space probes, they sought deeper understanding of the millions of bits of debris rocketing through the solar system. Scientists determined that most of these objects are left over from the creation of the planets and their moons. They classified these leftovers into categories such as asteroids, comets, and meteors. In this book, we'll explore seven wonders of asteroids, comets, and meteors. Ceres is a huge mountain-sized asteroid that orbits with other asteroids between Mars and Jupiter. Other marvels include Ganymede, the largest asteroid in the group called Earthgrazers or Near-Earth Objects, and Halley's comet, a ball of ice, that passes Earth every seventy-five or so years. We'll also explore the amazing impact that space debris can have on planets and moons. The Borealis Basin, a wondrous crater more than 5,000 miles across, formed when an asteroid collided with Mars in the ancient past. Then we will travel to the far-off Kuiper belt, where as many as 200 million icy bodies orbit, and wonder at the mystery of planetlike objects, such as Pluto and Charon. Finally, we’ll can experience a space wonder firsthand by standing outside on a night in August to watch the spectacular Perseid meteor shower fill the sky.
The Earth has limited material and energy resources while these resources in space are virtually unlimited. Further development of humanity will require going beyond our planet and exploring of extraterrestrial resources and sources of unlimited power. Thus far, all missions to asteroids have been motivated by scientific exploration. However, given recent advancements in various space technologies, mining asteroids for resources is becoming ever more feasible. A significant portion of asteroids value is derived from their location; the required resources do not need to be lifted at a great expense from the surface of the Earth. Resources derived from Asteroid not only can be brought back to Earth but could also be used to sustain human exploration of space and permanent settlements in space. This book investigates asteroids' prospective energy and material resources. It is a collection of topics related to asteroid exploration, and utilization. It presents past and future technologies and solutions to old problems that could become reality in our life time. The book therefore is a great source of condensed information for specialists involved in current and impending asteroid-related activities and a good starting point for space researchers, inventors, technologists and potential investors. Written for researchers, engineers, and businessmen interested in asteroids' exploration and exploitation. Keywords: Asteroids, Asteroid exploration, Asteroid exploitation, Energy sources, Space Resources, Material Resources, In-Situ Resource Utilization, Mining
Two hundred years after the first asteroid was discovered, asteroids can no longer be considered mere points of light in the sky. Spacecraft missions, advanced Earth-based observation techniques, and state-of-the-art numerical models are continually revealing the detailed shapes, structures, geological properties, and orbital characteristics of these smaller denizens of our solar system. This volume brings together the latest information obtained by spacecraft combined with astronomical observations and theoretical modeling, to present our best current understanding of asteroids and the clues they reveal for the origin an,d evolution of the solar system. This collective knowledge, prepared by a team of more than one hundred international authorities on asteroids, includes new insights into asteroid-meteorite connections, possible relationships with comets, and the hazards posed by asteroids colliding with Earth. The book's contents include reports on surveys based on remote observation and summaries of physical properties; results of in situ exploration; studies of dynamical, collisional, cosmochemical, and weathering evolutionary processes; and discussions of asteroid families and the relationships between asteroids and other solar system bodies. Two previous Space Science Series volumes have established standards for research into asteroids. Asteroids III carries that tradition forward in a book that will stand as the definitive source on its subject for the next decade.