Assessment of Novel Power Generation Systems for the Biomass Industry

Assessment of Novel Power Generation Systems for the Biomass Industry

Author:

Publisher:

Published: 1911

Total Pages:

ISBN-13:

DOWNLOAD EBOOK

The objective of this programme of research is to produce a method for assessing and optimising the performance of advanced gas turbine power plants for electricity generation within the Brazilian electric sector. With the privatisation of the Brazilian electric sector, interest has been given to the thermal plants and studies have been carried out along with the use of other alternative fuels rather than fossil fuels. Biomass is a fuel of increasing interest for power generation systems since it is clean and renewable. Essentially all biomass power plants in the Brazilian market today operate on a steam Rankine cycle, which has a poor efficiency. The Brazilian electricity market has paid attention on Biomass integrated gasification gas turbine (BIG/GT) combined cycle plants where solid biomass is gasified. A simple chemical model for representing the gasifier in the power plant is presented and optimisation of the gasification process has been applied. The method for assessing the performance of power plants takes into account not only energy, but it applies the exergy method, which uses the second law of thermodynamics and works out the destruction of energy inside plant components and energy losses rejected to atmosphere. A thermoeconomic model for assessing the power plant has also been described. The optimisation of the assessment method of power plants using exergy and thermoeconomics has been proposed based on genetic algorithms. This new technique has been fairly successful at solving optimisation problems and is easy to implement. The decision of applying genetic algorithms is due to the complexity of the mathematical model applied in the performance assessment of power plants. The assessment of combined cycles like gas / steam cycle, gas / air cycle, gas / steam / freon cycle, gas / air / freon cycle and chemically recuperated gas turbine have been investigated. The application of the overall assessment method helps to understand different and very expensi.


Advanced Power Generation Systems

Advanced Power Generation Systems

Author: Ibrahim Dincer

Publisher: Academic Press

Published: 2014-07-15

Total Pages: 657

ISBN-13: 0123838614

DOWNLOAD EBOOK

Advanced Power Generation Systems examines the full range of advanced multiple output thermodynamic cycles that can enable more sustainable and efficient power production from traditional methods, as well as driving the significant gains available from renewable sources. These advanced cycles can harness the by-products of one power generation effort, such as electricity production, to simultaneously create additional energy outputs, such as heat or refrigeration. Gas turbine-based, and industrial waste heat recovery-based combined, cogeneration, and trigeneration cycles are considered in depth, along with Syngas combustion engines, hybrid SOFC/gas turbine engines, and other thermodynamically efficient and environmentally conscious generation technologies. The uses of solar power, biomass, hydrogen, and fuel cells in advanced power generation are considered, within both hybrid and dedicated systems. The detailed energy and exergy analysis of each type of system provided by globally recognized author Dr. Ibrahim Dincer will inform effective and efficient design choices, while emphasizing the pivotal role of new methodologies and models for performance assessment of existing systems. This unique resource gathers information from thermodynamics, fluid mechanics, heat transfer, and energy system design to provide a single-source guide to solving practical power engineering problems. The only complete source of info on the whole array of multiple output thermodynamic cycles, covering all the design options for environmentally-conscious combined production of electric power, heat, and refrigeration Offers crucial instruction on realizing more efficiency in traditional power generation systems, and on implementing renewable technologies, including solar, hydrogen, fuel cells, and biomass Each cycle description clarified through schematic diagrams, and linked to sustainable development scenarios through detailed energy, exergy, and efficiency analyses Case studies and examples demonstrate how novel systems and performance assessment methods function in practice


Life Cycle Assessment of Energy Systems

Life Cycle Assessment of Energy Systems

Author: Guillermo San Miguel

Publisher: MDPI

Published: 2021-04-14

Total Pages: 198

ISBN-13: 3036505245

DOWNLOAD EBOOK

This Special Issue on “LCA of Energy Systems” contains inspiring contributions on assessing the sustainability of novel technologies destined to shape the future of our energy sector. These include battery-based and plug-in hybrid electric vehicles, geothermal energy, hydropower, biomass gasification, national electricity systems, and waste incineration. The analysis of trends and singularities will be invaluable to product designers, engineers, and policy makers. Furthermore, these exercises also contribute to refining the life cycle framework and harmonizing methodological decisions. Our hope is that this should be a step toward promoting the use of science and knowledge to shape a better world for everyone.


Multi-Objective Optimization of Industrial Power Generation Systems: Emerging Research and Opportunities

Multi-Objective Optimization of Industrial Power Generation Systems: Emerging Research and Opportunities

Author: Ganesan, Timothy

Publisher: IGI Global

Published: 2019-12-27

Total Pages: 233

ISBN-13: 1799817121

DOWNLOAD EBOOK

The increased complexity of the economy in recent years has led to the advancement of energy generation systems. Engineers in this industrial sector have been compelled to seek contemporary methods to keep pace with the rapid development of these systems. Computational intelligence has risen as a capable method that can effectively resolve complex scenarios within the power generation sector. In-depth research on the various applications of this technology is lacking, as engineering professionals need up-to-date information on how to successfully utilize computational intelligence in industrial systems. Multi-Objective Optimization of Industrial Power Generation Systems: Emerging Research and Opportunities provides emerging research exploring the theoretical and practical aspects of the application of intelligent optimization techniques within industrial energy systems. Featuring coverage on a broad range of topics such as swarm intelligence, renewable energy, and predictive modeling, this book is ideally designed for industrialists, engineers, industry professionals, researchers, students, and academics seeking current research on computational intelligence frameworks within the power generation sector.


Life-Cycle Analysis of Energy Systems

Life-Cycle Analysis of Energy Systems

Author: Bent Sørensen

Publisher: Royal Society of Chemistry

Published: 2011-06-06

Total Pages: 347

ISBN-13: 1849732868

DOWNLOAD EBOOK

Life-cycle assessment of new energy solutions plays an important role in discussions about global warming mitigation options and the evaluation of concrete energy production and conversion installations. This book starts by describing the methodology of life-cycle analysis and life-cycle assessment of new energy solutions. It then goes on to cover, in detail, a range of applications to individual energy installations, national supply systems, and to the global energy system in a climate impact context. Coverage is not limited to issues related to commercial uses by consultants according to ISO norms. It also emphasizes life-cycle studies as an open-ended scientific discipline embracing economic issues of cost, employment, equity, foreign trade balances, ecological sustainability, and a range of geo-political and social issues. A wealth of applications are described and a discussion on the results obtained in each study is included. Example areas are fossil and nuclear power plants, renewable energy systems, and systems based on hydrogen or batteries as energy carriers. The analysis is continued to the end-users of energy, where energy use in transportation, industry and home are scrutinized for their life-cycle impacts. Biofuel production and the combustion of firewood in home fireplaces and stoves are amongst the issues discussed. A central theme of the book is global warming. The impacts of greenhouse gas emissions are meticulously mapped at a depth far beyond that of the IPCC reports. A novel and surprising finding is that more lives will be saved than lost as a direct consequence of a warmer climate. After a 2oC increase in temperature, the reduction in death rates in areas with cold winters would outweigh the increase in the death rates in hot climates. However, this is only one of several impacts from greenhouse gases, and the remaining ones are still overwhelmingly negative. The fact that some population groups may benefit from higher temperatures (notably the ones most responsible for greenhouse gas emissions) whilst others (who did not contribute much to the problem) suffer is one of the main points of the book. The book is suitable as a university textbook and as a reference source for engineers, managers and public bodies responsible for planning and licensing.


Introduction to Energy Systems

Introduction to Energy Systems

Author: Ibrahim Dinçer

Publisher: John Wiley & Sons

Published: 2023-11-07

Total Pages: 581

ISBN-13: 1119825768

DOWNLOAD EBOOK

Introduction to Energy Systems An in-depth introduction to applications and analysis of energy systems, covering both renewable and traditional types of energy systems In Introduction to Energy Systems, the content is uniquely designed to cover comprehensive descriptions and assessments of all the key types of energy sources, including fossil fuels-based, nuclear, and renewable energy systems, with a special focus on their design, analysis and assessment, technical and operational aspects, and applications. As a comprehensive resource, the work also introduces many topics not typically covered in other energy system textbooks, such as system design and assessment through exergy, environmental impact assessment of energy systems, and life cycle assessment. From a theory standpoint, the book provides context on the importance of energy and the issues related to energy we face in our world today, with close attention paid to key environmental and sustainability issues. Furthermore, the book includes illustrative examples and problems, and case studies. To aid in seamless reader comprehension, helpful questions and problems are included at the end of each chapter. Sample topics covered in Introduction to Energy Systems include: Fundamental concepts and thermodynamic principles, traditional and innovative systems, and detailed applications in renewable energy systems, including solar, wind, geothermal, biomass, hydro, and marine energies Different types of fuels used in energy systems today, discussions of their combustion characteristics with a clear analysis of each one, and analyses and assessments through energy and exergy approaches Industrial ecology and life cycle assessment, with the intention of clearly assessing the environmental impacts of energy systems How to write balance equations for mass, energy, entropy and exergy, calculate the required capacities, and find the energy and exergy efficiencies and/or energetic and exegetics coefficient of performance values Introduction to Energy Systems serves as a valuable learning resource for both undergraduate and graduate students studying courses, such as Introduction to Energy Systems, Energy System Design, Renewable Energy, Energy & Sustainability, and Fundamentals of Renewable Energy.


Life Cycle Assessment of Energy Systems and Sustainable Energy Technologies

Life Cycle Assessment of Energy Systems and Sustainable Energy Technologies

Author: Riccardo Basosi

Publisher: Springer

Published: 2018-12-15

Total Pages: 184

ISBN-13: 3319937405

DOWNLOAD EBOOK

This book deals with the application of life cycle assessment (LCA) methodology to sustainable energy systems and technologies. It reviews the state-of-the-art of the Italian experiences on the LCA applied to energy, and the most recent results from research in this field, with a particular focus on renewables, bio-energy and sustainable solutions. The contributors describe in detail the applications of LCA to various energy system topics, including: • electricity production, smart energy grids and energy storage systems;• renewable energy production from biomass;• production of biodiesel from microalgae;• environmental impacts of biomass power plants; and• geothermal energy production. These topics are supported by critical reviews and case studies, with discussions of Italian examples, demonstrating LCA’s application to various energy systems. A particular focus is placed on bio-energies and bio-energy systems, demonstrating how LCA can be used for optimal bio-energy production. This book offers an opportunity for researchers and advanced practitioners in the field of LCA to learn more about the application of LCA methodology to energy systems and technologies. It will also be of interest to students, as it enables them to understand the environmental impacts of energy systems and sustainable energy technologies, through the analysis of their life cycles.