This Safety Report provides detailed information on ageing management programmes and time limited ageing analyses to manage existing and potential ageing effects and degradation mechanisms of structures, systems and components (SSCs) that are important to the safety of nuclear power plants. It has been written to assist operating organizations and regulatory bodies by specifying a technical basis and providing practical guidance on managing ageing of mechanical and electrical instrumentation and control components, and civil structures. It also provides a common, internationally recognized basis of what constitutes an effective ageing management programme, a knowledge base on ageing management for design of new plants and design reviews, and a roadmap to available information on ageing management.
The objective of this report is to identify significant ageing mechanisms and degradation locations, as well as to document current practices for the assessment and management of the ageing of boiling water reactor (BWR) pressure vessel internals (RPVIs). The report emphasizes safety aspects and also provides information on current inspections as well as on monitoring and mitigation practices for managing ageing of BWR RPVs.
In recent decades, the number of IAEA Member States planning to extend the operation of their nuclear power plants (NPPs) beyond the time frame originally anticipated has steadily increased. These decisions have been influenced by the significant economic advantages offered by the long term operation (LTO) of existing NPPs. This Safety Report complements IAEA Safety Standards Series Nos SSR-2/2 (Rev. 1), Safety of Nuclear Power Plants: Commissioning and Operation, and SSG-48, Ageing Management and Development of a Programme for Long Term Operation of Nuclear Power Plants. It provides information on selected topics from the latter, and specifically, it addresses data collection and record keeping, scope setting for structures, systems and components, plant programmes, corrective action programmes, and documentation of ageing management and LTO assessment. The publication focuses on NPPs throughout their lifetime, including operation beyond the time frame originally established for their operation and decommissioning, while considering the different reactor designs that exist around the world. It is also relevant for facilities for spent fuel storage and radioactive waste management at NPPs. It may also be used as a basis for managing the ageing of other nuclear installations and for radioactive waste management facilities. This Safety Report is intended to provide information for operating organizations but may be also used by regulatory bodies.
The present report is a revision of Safety Series No. 75-INSAG-3 (1988), updating the statements made on the objectives and principles of safe design and operation for electricity generating nuclear power plants. It includes the improvements made in the safety of operating nuclear power plants and identifies the principles underlying the best current safety policies to be applied in future plants. It presents INSAG's understanding of the principles underlying the best current safety policies and practices of the nuclear power industry.
Plant life management (PLiM) is a methodology focussed on the safety-first management of nuclear power plants over their entire lifetime. It incorporates and builds upon the usual periodic safety reviews and licence renewals as part of an overall framework designed to assist plant operators and regulators in assessing the operating conditions of a nuclear power plant, and establishing the technical and economic requirements for safe, long-term operation.Understanding and mitigating ageing in nuclear power plants critically reviews the fundamental ageing-degradation mechanisms of materials used in nuclear power plant structures, systems and components (SSC), along with their relevant analysis and mitigation paths, as well as reactor-type specific PLiM practices. Obsolescence and other less obvious ageing-related aspects in nuclear power plant operation are also examined in depth.Part one introduces the reader to the role of nuclear power in the global energy mix, and the importance and relevance of plant life management for the safety regulation and economics of nuclear power plants. Key ageing degradation mechanisms and their effects in nuclear power plant systems, structures and components are reviewed in part two, along with routes taken to characterise and analyse the ageing of materials and to mitigate or eliminate ageing degradation effects. Part three reviews analysis, monitoring and modelling techniques applicable to the study of nuclear power plant materials, as well as the application of advanced systems, structures and components in nuclear power plants. Finally, Part IV reviews the particular ageing degradation issues, plant designs, and application of plant life management (PLiM) practices in a range of commercial nuclear reactor types.With its distinguished international team of contributors, Understanding and mitigating ageing in nuclear power plants is a standard reference for all nuclear plant designers, operators, and nuclear safety and materials professionals and researchers. - Introduces the reader to the role of nuclear power in the global energy mix - Reviews the fundamental ageing-degradation mechanisms of materials used in nuclear power plant structures, systems and components (SSC) - Examines topics including elimination of ageing effects, plant design, and the application of plant life management (PLiM) practices in a range of commercial nuclear reactor types
PHM Society established International Journal of Prognostics and Health Management (IJPHM) in 2009 to facilitate archival publication of peer-reviewed results from research and development in the area of PHM. As a journal solely dedicated to the emerging field of PHM IJPHM is the first of its kind and has been a focal point for dissemination of peer-reviewed PHM knowledge. While for the first few years the journal maintained only an online presence, the printed volumes will now be available and can be obtained upon request.
When nuclear power plants reach the end of their nominal design life, they undergo a special safety review and an ageing assessment of their essential structures, systems and components for the purpose of validating or renewing their licence to operate for terms beyond the service period originally intended. Three different plant life management models have been used to qualify these nuclear power plants to operate beyond their original design life. This publication presents a collection of sample licensing practices for long term operation among IAEA Member States. The various plant life management models used to obtain long term operation authorizations are described and comparisons drawn against the standard periodic safety review model. Lessons learned and warnings about possible complications and pitfalls are also described to minimize the licensing risk during operation and future long term operation applications. The main intention of this publication is to support nuclear power plant owners and operators planning an extension of plant operation beyond its original design life, but it also serves as a useful guide for those interested in procuring, from the beginning, the necessary tools to implement ageing management in their future plant with long term operation in mind.
Describes international approaches for maintaining fuel subcritical, removing residual heat, providing radiation protection and containing radioactive materials for the lifetime of a facility. It is intended to provide details on the safety assessment of interim spent fuel storage facilities that are not an integral part of an operating plant.
The nuclear energy company has overseen the production of its own history, focusing on programs at its laboratories in Chalk River, Ontario, and Whiteshell, Manitoba between 1943 and 1985. The 16 scientists who wrote the narrative discuss the organization and operations of the laboratories, nuclear safety and radiation protection, radioisotopes, basic research, developing the CANDU reactor, managing the radioactive wastes, business development, and revenue generation. Canadian card order number: C97-900188-9. Annotation copyrighted by Book News, Inc., Portland, OR
This publication provides an overview of the various plant life management (PLiM) methodologies, technologies and processes to ensure long term operation of heavy water reactors (HWRs). Implementation of a systematic and comprehensive PLiM programme, such as that outlined in the publication, goes a long way towards meeting the overall goal of HWR owners and operators to successfully achieve design life and continued operation. Included in this publication are technical aspects of HWR PLiM, component specific technology considerations for condition assessment, an example of a proactive ageing management programme, and Ontario power generation experiences. Country reports from Argentina, Canada, India, the Republic of Korea and Romania are attached in an annex in order to share practices and experiences of PLiM programmes.