The set of papers collected in this issue originated from the AGERE! Workshop series - the last edition was held in 2017 - and concern the application of actor-based approaches to mainstream application domains and the discussion of related issues. The issue is divided into two parts. The first part concerns Web Programming; Data-Intensive Parallel Programming; Mobile Computing; Self-Organizing Systems and the second part concerns Scheduling; Debugging; Communication and Coordination; Monitoring.
This two volume set LNCS 7016 and LNCS 7017 constitutes the refereed proceedings of the 11th International Conference on Algorithms and Architectures for Parallel Processing, ICA3PP 2011, held in Melbourne, Australia, in October 2011. The first volume presents 24 revised regular papers and 17 revised short papers together with the abstract of the keynote lecture - all carefully reviewed and selected from 85 initial submissions. The papers cover the many dimensions of parallel algorithms and architectures, encompassing fundamental theoretical approaches, practical experimental results, and commercial components and systems and focus on two broad areas of parallel and distributed computing, i.e., architectures, algorithms and networks, and systems and applications.
Compiling for parallelism is a longstanding topic of compiler research. This book describes the fundamental principles of compiling "regular" numerical programs for parallelism. We begin with an explanation of analyses that allow a compiler to understand the interaction of data reads and writes in different statements and loop iterations during program execution. These analyses include dependence analysis, use-def analysis and pointer analysis. Next, we describe how the results of these analyses are used to enable transformations that make loops more amenable to parallelization, and discuss transformations that expose parallelism to target shared memory multicore and vector processors. We then discuss some problems that arise when parallelizing programs for execution on distributed memory machines. Finally, we conclude with an overview of solving Diophantine equations and suggestions for further readings in the topics of this book to enable the interested reader to delve deeper into the field. Table of Contents: Introduction and overview / Dependence analysis, dependence graphs and alias analysis / Program parallelization / Transformations to modify and eliminate dependences / Transformation of iterative and recursive constructs / Compiling for distributed memory machines / Solving Diophantine equations / A guide to further reading
Programming multi-core and many-core computing systems Sabri Pllana, Linnaeus University, Sweden Fatos Xhafa, Technical University of Catalonia, Spain Provides state-of-the-art methods for programming multi-core and many-core systems The book comprises a selection of twenty two chapters covering: fundamental techniques and algorithms; programming approaches; methodologies and frameworks; scheduling and management; testing and evaluation methodologies; and case studies for programming multi-core and many-core systems. Program development for multi-core processors, especially for heterogeneous multi-core processors, is significantly more complex than for single-core processors. However, programmers have been traditionally trained for the development of sequential programs, and only a small percentage of them have experience with parallel programming. In the past, only a relatively small group of programmers interested in High Performance Computing (HPC) was concerned with the parallel programming issues, but the situation has changed dramatically with the appearance of multi-core processors on commonly used computing systems. It is expected that with the pervasiveness of multi-core processors, parallel programming will become mainstream. The pervasiveness of multi-core processors affects a large spectrum of systems, from embedded and general-purpose, to high-end computing systems. This book assists programmers in mastering the efficient programming of multi-core systems, which is of paramount importance for the software-intensive industry towards a more effective product-development cycle. Key features: Lessons, challenges, and roadmaps ahead. Contains real world examples and case studies. Helps programmers in mastering the efficient programming of multi-core and many-core systems. The book serves as a reference for a larger audience of practitioners, young researchers and graduate level students. A basic level of programming knowledge is required to use this book.
This book constitutes the refereed proceedings of the 10th International Conference on Detection of Intrusions and Malware, and Vulnerability Assessment, DIMVA 2013, held in Berlin, Germany, in July 2013. The 9 revised full papers presented together with 3 short papers were carefully reviewed and selected from 38 submissions. The papers are organized in topical sections on malware; network security, Web security; attacks and defenses; and host security.
This book constitutes the refereed conference proceedings of the 20th International Symposium on Research in Attacks, Intrusions, and Defenses, RAID 2017, held in Atlanta, GA, USA, in September 2017. The 21 revised full papers were selected from 105 submissions. They are organized in the following topics: software security, intrusion detection, systems security, android security, cybercrime, cloud security, network security.
The two-volume set LNCS 10777 and 10778 constitutes revised selected papers from the 12th International Conference on Parallel Processing and Applied Mathematics, PPAM 2017, held in Lublin, Poland, in September 2017. The 49 regular papers presented in the proceedings were selected from 98 submissions. For the workshops and special sessions, that were held as integral parts of the PPAM 2017 conference, a total of 51 papers was accepted from 75 submissions. The papers were organized in topical sections named as follows: Part I: numerical algorithms and parallel scientific computing; particle methods in simulations; task-based paradigm of parallel computing; GPU computing; parallel non-numerical algorithms; performance evaluation of parallel algorithms and applications; environments and frameworks for parallel/distributed/cloud computing; applications of parallel computing; soft computing with applications; and special session on parallel matrix factorizations. Part II: workshop on models, algorithms and methodologies for hybrid parallelism in new HPC systems; workshop power and energy aspects of computations (PEAC 2017); workshop on scheduling for parallel computing (SPC 2017); workshop on language-based parallel programming models (WLPP 2017); workshop on PGAS programming; minisymposium on HPC applications in physical sciences; minisymposium on high performance computing interval methods; workshop on complex collective systems.
This book constitutes the proceedings of the 6th International Conference on Information Security Practice and Experience, ISPEC 2010, held in Seoul, Korea, in May 2010. The 28 papers presented in this volume were carefully reviewed and selected from 91 submissions. They are grouped in sections on cryptanalysis, algorithms and implementations, network security, access control, identity management, trust management, public key cryptography, and security applications.
This book constitutes the refereed proceedings of the 5th International Workshop on Applied Reconfigurable Computing, ARC 2009, held in Karlsruhe, Germany, in March 2009. The 21 full papers and 21 short papers presented together with the abstracts of 3 keynote lectures were carefully reviewed and selected from about 100 submissions. The papers are organized in topical sections on FPGA security and bitstream analysis, fault tolerant systems, architectures, place and route techniques, cryptography, and resource allocation and scheduling, as well as on applications.
This book constitutes the refereed proceedings of the 7th International Conference on Formal Modeling and Analysis of Timed Systems, FORMATS 2009, held in Budapest, Hungary, September 2009. The 18 revised full papers presented together with 4 invited talks were carefully reviewed and selected from 40 submissions. The aim of FORMATS is to promote the study of fundamental and practical aspects of timed systems, and to bring together researchers from different disciplines that share interests in the modelling and analysis of timed systems.Typical topics include (but are not limited to): – Foundations and Semantics. Theoretical foundations of timed systems and languages; comparison between different models (timed automata, timed Petri nets, hybrid automata, timed process algebra, max-plus algebra, probabilistic models). – Methods and Tools. Techniques, algorithms, data structures, and software tools for analyzing timed systems and resolving temporal constraints (scheduling, worst-case execution time analysis, optimization, model checking, testing, constraint solving, etc.). – Applications. Adaptation and specialization of timing technology in application domains in which timing plays an important role (real-time software, hardware circuits, and problems of scheduling in manufacturing and telecommunication).