Geometric Aspects of General Topology

Geometric Aspects of General Topology

Author: Katsuro Sakai

Publisher: Springer Science & Business Media

Published: 2013-07-22

Total Pages: 539

ISBN-13: 443154397X

DOWNLOAD EBOOK

This book is designed for graduate students to acquire knowledge of dimension theory, ANR theory (theory of retracts), and related topics. These two theories are connected with various fields in geometric topology and in general topology as well. Hence, for students who wish to research subjects in general and geometric topology, understanding these theories will be valuable. Many proofs are illustrated by figures or diagrams, making it easier to understand the ideas of those proofs. Although exercises as such are not included, some results are given with only a sketch of their proofs. Completing the proofs in detail provides good exercise and training for graduate students and will be useful in graduate classes or seminars. Researchers should also find this book very helpful, because it contains many subjects that are not presented in usual textbooks, e.g., dim X × I = dim X + 1 for a metrizable space X; the difference between the small and large inductive dimensions; a hereditarily infinite-dimensional space; the ANR-ness of locally contractible countable-dimensional metrizable spaces; an infinite-dimensional space with finite cohomological dimension; a dimension raising cell-like map; and a non-AR metric linear space. The final chapter enables students to understand how deeply related the two theories are. Simplicial complexes are very useful in topology and are indispensable for studying the theories of both dimension and ANRs. There are many textbooks from which some knowledge of these subjects can be obtained, but no textbook discusses non-locally finite simplicial complexes in detail. So, when we encounter them, we have to refer to the original papers. For instance, J.H.C. Whitehead's theorem on small subdivisions is very important, but its proof cannot be found in any textbook. The homotopy type of simplicial complexes is discussed in textbooks on algebraic topology using CW complexes, but geometrical arguments using simplicial complexes are rather easy.


Topological Aspects of the Dynamics of Fluids and Plasmas

Topological Aspects of the Dynamics of Fluids and Plasmas

Author: H.K. Moffatt

Publisher: Springer Science & Business Media

Published: 2013-03-09

Total Pages: 597

ISBN-13: 9401735506

DOWNLOAD EBOOK

This volume contains papers arising out of the program of the Institute for Theoretical Physics (ITP) of the University of California at Santa Bar bara, August-December 1991, on the subject "Topological Fluid Dynamics". The first group of papers cover the lectures on Knot Theory, Relaxation un der Topological Constraints, Kinematics of Stretching, and Fast Dynamo Theory presented at the initial Pedagogical Workshop of the program. The remaining papers were presented at the subsequent NATO Advanced Re search Workshop or were written during the course of the program. We wish to acknowledge the support of the NATO Science Committee in making this workshop possible. The scope of "Topological Fluid Dynamics" was defined by an earlier Symposium of the International Union of Theoretical and Applied Mechan ics (IUTAM) held in Cambridge, England in August, 1989, the Proceedings of which were published (Eds. H.K. Moffatt and A. Tsinober) by Cambridge University Press in 1990. The proposal to hold an ITP program on this sub ject emerged from that Symposium, and we are grateful to John Greene and Charlie Kennel at whose encouragement the original proposal was formu lated. Topological fluid dynamics covers a range of problems, particularly those involving vortex tubes and/or magnetic flux tubes in nearly ideal fluids, for which topological structures can be identified and to some extent quantified.


Experiments in Topology

Experiments in Topology

Author: Stephen Barr

Publisher: Courier Corporation

Published: 2012-12-04

Total Pages: 244

ISBN-13: 048615274X

DOWNLOAD EBOOK

Classic, lively explanation of one of the byways of mathematics. Klein bottles, Moebius strips, projective planes, map coloring, problem of the Koenigsberg bridges, much more, described with clarity and wit.


Elementary Concepts of Topology

Elementary Concepts of Topology

Author: Paul Alexandroff

Publisher: Courier Corporation

Published: 2012-08-13

Total Pages: 68

ISBN-13: 0486155064

DOWNLOAD EBOOK

Concise work presents topological concepts in clear, elementary fashion, from basics of set-theoretic topology, through topological theorems and questions based on concept of the algebraic complex, to the concept of Betti groups. Includes 25 figures.


Elements of Topological Dynamics

Elements of Topological Dynamics

Author: J. de Vries

Publisher: Springer Science & Business Media

Published: 2013-04-17

Total Pages: 762

ISBN-13: 9401581711

DOWNLOAD EBOOK

This book is designed as an introduction into what I call 'abstract' Topological Dynamics (TO): the study of topological transformation groups with respect to problems that can be traced back to the qualitative theory of differential equa is in the tradition of the books [GH] and [EW. The title tions. So this book (,Elements . . . ' rather than 'Introduction . . . ') does not mean that this book should be compared, either in scope or in (intended) impact, with the 'Ele ments' of Euclid or Bourbaki. Instead, it reflects the choice and organisation of the material in this book: elementary and basic (but sufficient to understand recent research papers in this field). There are still many challenging prob lems waiting for a solution, and especially among general topologists there is a growing interest in this direction. However, the technical inaccessability of many research papers makes it almost impossible for an outsider to under stand what is going on. To a large extent, this inaccessability is caused by the lack of a good and systematic exposition of the fundamental methods and techniques of abstract TO. This book is an attempt to fill this gap. The guiding principle for the organization of the material in this book has been the exposition of methods and techniques rather than a discussion of the leading problems and their solutions. though the latter are certainly not neglected: they are used as a motivation wherever possible.


Elements of Differential Topology

Elements of Differential Topology

Author: Anant R. Shastri

Publisher: CRC Press

Published: 2011-03-04

Total Pages: 317

ISBN-13: 1439831637

DOWNLOAD EBOOK

Derived from the author's course on the subject, Elements of Differential Topology explores the vast and elegant theories in topology developed by Morse, Thom, Smale, Whitney, Milnor, and others. It begins with differential and integral calculus, leads you through the intricacies of manifold theory, and concludes with discussions on algebraic topol


Topology and Geometry

Topology and Geometry

Author: Glen E. Bredon

Publisher: Springer Science & Business Media

Published: 1993-06-24

Total Pages: 580

ISBN-13: 0387979263

DOWNLOAD EBOOK

This book offers an introductory course in algebraic topology. Starting with general topology, it discusses differentiable manifolds, cohomology, products and duality, the fundamental group, homology theory, and homotopy theory. From the reviews: "An interesting and original graduate text in topology and geometry...a good lecturer can use this text to create a fine course....A beginning graduate student can use this text to learn a great deal of mathematics."—-MATHEMATICAL REVIEWS


Essential Topology

Essential Topology

Author: Martin D. Crossley

Publisher: Springer Science & Business Media

Published: 2011-02-11

Total Pages: 244

ISBN-13: 9781852337827

DOWNLOAD EBOOK

This book brings the most important aspects of modern topology within reach of a second-year undergraduate student. It successfully unites the most exciting aspects of modern topology with those that are most useful for research, leaving readers prepared and motivated for further study. Written from a thoroughly modern perspective, every topic is introduced with an explanation of why it is being studied, and a huge number of examples provide further motivation. The book is ideal for self-study and assumes only a familiarity with the notion of continuity and basic algebra.


Elementary Topology

Elementary Topology

Author: O. Ya. Viro, O. A. Ivanov, N. Yu. Netsvetaev, V. M. Kharlamov

Publisher: American Mathematical Soc.

Published:

Total Pages: 432

ISBN-13: 9780821886250

DOWNLOAD EBOOK

This text contains a detailed introduction to general topology and an introduction to algebraic topology via its most classical and elementary segment. Proofs of theorems are separated from their formulations and are gathered at the end of each chapter, making this book appear like a problem book and also giving it appeal to the expert as a handbook. The book includes about 1,000 exercises.