Originating from models of biological neural systems, artificial neural networks (ANN) are the cornerstones of artificial intelligence research. Catalyzed by the upsurge in computational power and availability, and made widely accessible with the co-evolution of software, algorithms, and methodologies, artificial neural networks have had a profound
In this book, highly qualified multidisciplinary scientists grasp their recent researches motivated by the importance of artificial neural networks. It addresses advanced applications and innovative case studies for the next-generation optical networks based on modulation recognition using artificial neural networks, hardware ANN for gait generation of multi-legged robots, production of high-resolution soil property ANN maps, ANN and dynamic factor models to combine forecasts, ANN parameter recognition of engineering constants in Civil Engineering, ANN electricity consumption and generation forecasting, ANN for advanced process control, ANN breast cancer detection, ANN applications in biofuels, ANN modeling for manufacturing process optimization, spectral interference correction using a large-size spectrometer and ANN-based deep learning, solar radiation ANN prediction using NARX model, and ANN data assimilation for an atmospheric general circulation model.
The prevailing global environmental crisis is primarily because of non-standardized parameters for environmental regulation. Unplanned expansion of economic activities, consideration for environmental conservation and several associated problems are emerging due to degradation in quality of ambient environment such as clean air, safe drinking water and quality of food, particularly in developing nations. Due to poor/casual execution of EIA protocol, newly developing countries are preferred destination for establishing pollution emitting industries, which results in degradation and depletion of natural resources. Lack of environmental policy intervention is another major attraction for establishing such industries in these nations. In order to ensure sustainable development, the highest priority issues include the monitoring and eradication of environmental problems which arise due to economic development. Initiation of any form of economic development primarily results in loss of forests and thus biodiversity, followed by deterioration in quality of air and contamination of natural resources. The worst impact of non-standardized economic development is the contamination of air, water and soil. Sustainable development ensures responsible interface with the environment to minimize the depletion or degradation of natural resources and ensure long term environmental quality. It involves integrated approaches in understanding the importance of environmental management systems and policy inventions leading to improved environmental performance. The present book is proposed to address the environmental concerns associated with economic development and approaches involved to attain sustainable economic development, which include monitoring of the quality of air, deforestation, quality of water resources, soil erosion and degradation of the natural environment.
Soft Computing Techniques in Solid Waste and Wastewater Management is a thorough guide to computational solutions for researchers working in solid waste and wastewater management operations. This book covers in-depth analysis of process variables, their effects on overall efficiencies, and optimal conditions and procedures to improve performance using soft computing techniques. These topics coupled with the systematic analyses described will help readers understand various techniques that can be effectively used to achieve the highest performance. In-depth case studies along with discussions on applications of various soft-computing techniques help readers control waste processes and come up with short-term, mid-term and long-term strategies. Waste management is an increasingly important field due to rapidly increasing levels of waste production around the world. Numerous potential solutions for reducing waste production are underway, including applications of machine learning and computational studies on waste management processes. This book details the diverse approaches and techniques in these fields, providing a single source of information researchers and industry practitioners. It is ideal for academics, researchers and engineers in waste management, environmental science, environmental engineering and computing, with relation to environmental science and waste management. - Provides a comprehensive reference on the implementation of soft computing techniques in waste management, drawing together current research and future implications - Includes detailed algorithms used, enabling authors to understand and appreciate potential applications - Presents relevant case studies in solid and wastewater management that show real-world applications of discussed technologies
This book covers theoretical aspects as well as recent innovative applications of Artificial Neural networks (ANNs) in natural, environmental, biological, social, industrial and automated systems. It presents recent results of ANNs in modelling small, large and complex systems under three categories, namely, 1) Networks, Structure Optimisation, Robustness and Stochasticity 2) Advances in Modelling Biological and Environmental Systems and 3) Advances in Modelling Social and Economic Systems. The book aims at serving undergraduates, postgraduates and researchers in ANN computational modelling.
Artificial neural networks (ANNs) present many benefits in analyzing complex data in a proficient manner. As an effective and efficient problem-solving method, ANNs are incredibly useful in many different fields. From education to medicine and banking to engineering, artificial neural networks are a growing phenomenon as more realize the plethora of uses and benefits they provide. Due to their complexity, it is vital for researchers to understand ANN capabilities in various fields. The Research Anthology on Artificial Neural Network Applications covers critical topics related to artificial neural networks and their multitude of applications in a number of diverse areas including medicine, finance, operations research, business, social media, security, and more. Covering everything from the applications and uses of artificial neural networks to deep learning and non-linear problems, this book is ideal for computer scientists, IT specialists, data scientists, technologists, business owners, engineers, government agencies, researchers, academicians, and students, as well as anyone who is interested in learning more about how artificial neural networks can be used across a wide range of fields.
DRUG DESIGN USING MACHINE LEARNING The use of machine learning algorithms in drug discovery has accelerated in recent years and this book provides an in-depth overview of the still-evolving field. The objective of this book is to bring together several chapters that function as an overview of the use of machine learning and artificial intelligence applied to drug development. The initial chapters discuss drug-target interactions through machine learning for improving drug delivery, healthcare, and medical systems. Further chapters also provide topics on drug repurposing through machine learning, drug designing, and ultimately discuss drug combinations prescribed for patients with multiple or complex ailments. This excellent overview Provides a broad synopsis of machine learning and artificial intelligence applications to the advancement of drugs; Details the use of molecular recognition for drug development through various mathematical models; Highlights classical as well as machine learning-based approaches to study target-drug interactions in the field of drug discovery; Explores computer-aided technics for prediction of drug effectiveness and toxicity. Audience The book will be useful for information technology professionals, pharmaceutical industry workers, engineers, university researchers, medical practitioners, and laboratory workers who have a keen interest in the area of machine learning and artificial intelligence approaches applied to drug advancements.
This book highlights a broad range of modern information technology tools, techniques, investigations and open challenges, mainly with applications in systems research and computational physics. Divided into three major sections, it begins by presenting specialized calculation methods in the framework of data analysis and intelligent computing. In turn, the second section focuses on application aspects, mainly for systems research, while the final section investigates how various tasks in the basic disciplines—mathematics and physics—can be tackled with the aid of contemporary IT methods. The book gathers selected presentations from the 3rd Conference on Information Technology, Systems Research and Computational Physics (ITSRCP'18), which took place on 2–5 July 2018 in Krakow, Poland. The intended readership includes interdisciplinary scientists and practitioners pursuing research at the interfaces of information technology, systems research, and computational physics.