Artificial Neural Networks for Civil Engineers

Artificial Neural Networks for Civil Engineers

Author: Ian Flood

Publisher: ASCE Publications

Published: 1998-01-01

Total Pages: 300

ISBN-13: 9780784474464

DOWNLOAD EBOOK

Sponsored by the Committee on Expert Systems and Artificial Intelligence of the Technical Council on Computer Practices of ASCE. This report illustrates advanced methods and new developments in the application of artificial neural networks to solve problems in civil engineering.Ø Topics include: Øevaluating new construction technologies; Øusing multi-layeredØartificial neural networkØarchitecture to overcome problems with conventional traffic signal control systems; Øincreasing the computational efficiency of an optimization model; Øpredicting carbonation depth in concrete structures; Ødetecting defects in concrete piles; Øanalyzing pavement systems; Øusing neural network hybrids to select the most appropriate bidders for a construction project; and Øpredicting the Energy Performance Index of residential buildings. ØMany of the ideas and techniques discussed in this book cross across disciplinary boundaries and, therefore, should be of interest to all civil engineers.


Artificial Neural Networks in Hydrology

Artificial Neural Networks in Hydrology

Author: R.S. Govindaraju

Publisher: Springer Science & Business Media

Published: 2013-03-09

Total Pages: 338

ISBN-13: 9401593418

DOWNLOAD EBOOK

R. S. GOVINDARAJU and ARAMACHANDRA RAO School of Civil Engineering Purdue University West Lafayette, IN. , USA Background and Motivation The basic notion of artificial neural networks (ANNs), as we understand them today, was perhaps first formalized by McCulloch and Pitts (1943) in their model of an artificial neuron. Research in this field remained somewhat dormant in the early years, perhaps because of the limited capabilities of this method and because there was no clear indication of its potential uses. However, interest in this area picked up momentum in a dramatic fashion with the works of Hopfield (1982) and Rumelhart et al. (1986). Not only did these studies place artificial neural networks on a firmer mathematical footing, but also opened the dOOf to a host of potential applications for this computational tool. Consequently, neural network computing has progressed rapidly along all fronts: theoretical development of different learning algorithms, computing capabilities, and applications to diverse areas from neurophysiology to the stock market. . Initial studies on artificial neural networks were prompted by adesire to have computers mimic human learning. As a result, the jargon associated with the technical literature on this subject is replete with expressions such as excitation and inhibition of neurons, strength of synaptic connections, learning rates, training, and network experience. ANNs have also been referred to as neurocomputers by people who want to preserve this analogy.


Advanced Applications for Artificial Neural Networks

Advanced Applications for Artificial Neural Networks

Author: Adel El-Shahat

Publisher: BoD – Books on Demand

Published: 2018-02-28

Total Pages: 298

ISBN-13: 9535137808

DOWNLOAD EBOOK

In this book, highly qualified multidisciplinary scientists grasp their recent researches motivated by the importance of artificial neural networks. It addresses advanced applications and innovative case studies for the next-generation optical networks based on modulation recognition using artificial neural networks, hardware ANN for gait generation of multi-legged robots, production of high-resolution soil property ANN maps, ANN and dynamic factor models to combine forecasts, ANN parameter recognition of engineering constants in Civil Engineering, ANN electricity consumption and generation forecasting, ANN for advanced process control, ANN breast cancer detection, ANN applications in biofuels, ANN modeling for manufacturing process optimization, spectral interference correction using a large-size spectrometer and ANN-based deep learning, solar radiation ANN prediction using NARX model, and ANN data assimilation for an atmospheric general circulation model.


CIGOS 2019, Innovation for Sustainable Infrastructure

CIGOS 2019, Innovation for Sustainable Infrastructure

Author: Cuong Ha-Minh

Publisher: Springer Nature

Published: 2019-10-10

Total Pages: 1288

ISBN-13: 981150802X

DOWNLOAD EBOOK

This book presents selected articles from the 5th International Conference on Geotechnics, Civil Engineering Works and Structures, held in Ha Noi, focusing on the theme “Innovation for Sustainable Infrastructure”, aiming to not only raise awareness of the vital importance of sustainability in infrastructure development but to also highlight the essential roles of innovation and technology in planning and building sustainable infrastructure. It provides an international platform for researchers, practitioners, policymakers and entrepreneurs to present their recent advances and to exchange knowledge and experience on various topics related to the theme of “Innovation for Sustainable Infrastructure”.


Artificial Neural Networks in Real-life Applications

Artificial Neural Networks in Real-life Applications

Author: Juan Ramon Rabunal

Publisher: IGI Global

Published: 2006-01-01

Total Pages: 395

ISBN-13: 1591409020

DOWNLOAD EBOOK

"This book offers an outlook of the most recent works at the field of the Artificial Neural Networks (ANN), including theoretical developments and applications of systems using intelligent characteristics for adaptability"--Provided by publisher.


Artificial Neural Networks for Engineers and Scientists

Artificial Neural Networks for Engineers and Scientists

Author: S. Chakraverty

Publisher: CRC Press

Published: 2017-07-20

Total Pages: 157

ISBN-13: 1351651315

DOWNLOAD EBOOK

Differential equations play a vital role in the fields of engineering and science. Problems in engineering and science can be modeled using ordinary or partial differential equations. Analytical solutions of differential equations may not be obtained easily, so numerical methods have been developed to handle them. Machine intelligence methods, such as Artificial Neural Networks (ANN), are being used to solve differential equations, and these methods are presented in Artificial Neural Networks for Engineers and Scientists: Solving Ordinary Differential Equations. This book shows how computation of differential equation becomes faster once the ANN model is properly developed and applied.


Application of Soft Computing Techniques in Civil Engineering

Application of Soft Computing Techniques in Civil Engineering

Author: S. M. Yadav

Publisher: MV Learning

Published: 2018-09-30

Total Pages: 0

ISBN-13: 9789387692817

DOWNLOAD EBOOK

Presents knowledge and experience of soft computing techniques in civil engineering. The principal concern of the book is to show how soft computing techniques can be applied to solve problems in research and practice.


Artificial Neural Networks

Artificial Neural Networks

Author: Joao Luis Garcia Rosa

Publisher: BoD – Books on Demand

Published: 2016-10-19

Total Pages: 416

ISBN-13: 9535127047

DOWNLOAD EBOOK

The idea of simulating the brain was the goal of many pioneering works in Artificial Intelligence. The brain has been seen as a neural network, or a set of nodes, or neurons, connected by communication lines. Currently, there has been increasing interest in the use of neural network models. This book contains chapters on basic concepts of artificial neural networks, recent connectionist architectures and several successful applications in various fields of knowledge, from assisted speech therapy to remote sensing of hydrological parameters, from fabric defect classification to application in civil engineering. This is a current book on Artificial Neural Networks and Applications, bringing recent advances in the area to the reader interested in this always-evolving machine learning technique.


A Primer on Machine Learning Applications in Civil Engineering

A Primer on Machine Learning Applications in Civil Engineering

Author: Paresh Chandra Deka

Publisher: CRC Press

Published: 2019-10-28

Total Pages: 211

ISBN-13: 0429836651

DOWNLOAD EBOOK

Machine learning has undergone rapid growth in diversification and practicality, and the repertoire of techniques has evolved and expanded. The aim of this book is to provide a broad overview of the available machine-learning techniques that can be utilized for solving civil engineering problems. The fundamentals of both theoretical and practical aspects are discussed in the domains of water resources/hydrological modeling, geotechnical engineering, construction engineering and management, and coastal/marine engineering. Complex civil engineering problems such as drought forecasting, river flow forecasting, modeling evaporation, estimation of dew point temperature, modeling compressive strength of concrete, ground water level forecasting, and significant wave height forecasting are also included. Features Exclusive information on machine learning and data analytics applications with respect to civil engineering Includes many machine learning techniques in numerous civil engineering disciplines Provides ideas on how and where to apply machine learning techniques for problem solving Covers water resources and hydrological modeling, geotechnical engineering, construction engineering and management, coastal and marine engineering, and geographical information systems Includes MATLAB® exercises