Beginning Artificial Intelligence with the Raspberry Pi

Beginning Artificial Intelligence with the Raspberry Pi

Author: Donald J. Norris

Publisher: Apress

Published: 2017-06-05

Total Pages: 379

ISBN-13: 1484227433

DOWNLOAD EBOOK

Gain a gentle introduction to the world of Artificial Intelligence (AI) using the Raspberry Pi as the computing platform. Most of the major AI topics will be explored, including expert systems, machine learning both shallow and deep, fuzzy logic control, and more! AI in action will be demonstrated using the Python language on the Raspberry Pi. The Prolog language will also be introduced and used to demonstrate fundamental AI concepts. In addition, the Wolfram language will be used as part of the deep machine learning demonstrations. A series of projects will walk you through how to implement AI concepts with the Raspberry Pi. Minimal expense is needed for the projects as only a few sensors and actuators will be required. Beginners and hobbyists can jump right in to creating AI projects with the Raspberry PI using this book. What You'll Learn What AI is and—as importantly—what it is not Inference and expert systems Machine learning both shallow and deep Fuzzy logic and how to apply to an actual control system When AI might be appropriate to include in a system Constraints and limitations of the Raspberry Pi AI implementation Who This Book Is For Hobbyists, makers, engineers involved in designing autonomous systems and wanting to gain an education in fundamental AI concepts, and non-technical readers who want to understand what AI is and how it might affect their lives.


Artificial Intelligence: Concepts, Methodologies, Tools, and Applications

Artificial Intelligence: Concepts, Methodologies, Tools, and Applications

Author: Management Association, Information Resources

Publisher: IGI Global

Published: 2016-12-12

Total Pages: 3095

ISBN-13: 152251760X

DOWNLOAD EBOOK

Ongoing advancements in modern technology have led to significant developments in artificial intelligence. With the numerous applications available, it becomes imperative to conduct research and make further progress in this field. Artificial Intelligence: Concepts, Methodologies, Tools, and Applications provides a comprehensive overview of the latest breakthroughs and recent progress in artificial intelligence. Highlighting relevant technologies, uses, and techniques across various industries and settings, this publication is a pivotal reference source for researchers, professionals, academics, upper-level students, and practitioners interested in emerging perspectives in the field of artificial intelligence.


Building Enterprise IoT Applications

Building Enterprise IoT Applications

Author: Chandrasekar Vuppalapati

Publisher: CRC Press

Published: 2019-12-12

Total Pages: 442

ISBN-13: 0429508697

DOWNLOAD EBOOK

McKinsey Global Institute predicts Internet of Things (IoT) could generate up to $11.1 trillion a year in economic value by 2025. Gartner Research Company expects 20 billion inter-connected devices by 2020 and, as per Gartner, the IoT will have a significant impact on the economy by transforming many enterprises into digital businesses and facilitating new business models, improving efficiency and increasing employee and customer engagement. It’s clear from above and our research that the IoT is a game changer and will have huge positive impact in foreseeable future. In order to harvest the benefits of IoT revolution, the traditional software development paradigms must be fully upgraded. The mission of our book, is to prepare current and future software engineering teams with the skills and tools to fully utilize IoT capabilities. The book introduces essential IoT concepts from the perspectives of full-scale software development with the emphasis on creating niche blue ocean products. It also: Outlines a fundamental full stack architecture for IoT Describes various development technologies in each IoT layer Explains IoT solution development from Product management perspective Extensively covers security and applicable threat models as part of IoT stack The book provides details of several IoT reference architectures with emphasis on data integration, edge analytics, cluster architectures and closed loop responses.


TinyML

TinyML

Author: Pete Warden

Publisher: O'Reilly Media

Published: 2019-12-16

Total Pages: 504

ISBN-13: 1492052019

DOWNLOAD EBOOK

Deep learning networks are getting smaller. Much smaller. The Google Assistant team can detect words with a model just 14 kilobytes in size—small enough to run on a microcontroller. With this practical book you’ll enter the field of TinyML, where deep learning and embedded systems combine to make astounding things possible with tiny devices. Pete Warden and Daniel Situnayake explain how you can train models small enough to fit into any environment. Ideal for software and hardware developers who want to build embedded systems using machine learning, this guide walks you through creating a series of TinyML projects, step-by-step. No machine learning or microcontroller experience is necessary. Build a speech recognizer, a camera that detects people, and a magic wand that responds to gestures Work with Arduino and ultra-low-power microcontrollers Learn the essentials of ML and how to train your own models Train models to understand audio, image, and accelerometer data Explore TensorFlow Lite for Microcontrollers, Google’s toolkit for TinyML Debug applications and provide safeguards for privacy and security Optimize latency, energy usage, and model and binary size


PyTorch Cookbook

PyTorch Cookbook

Author: Matthew Rosch

Publisher: GitforGits

Published: 2023-10-04

Total Pages: 238

ISBN-13: 8119177436

DOWNLOAD EBOOK

Starting a PyTorch Developer and Deep Learning Engineer career? Check out this 'PyTorch Cookbook,' a comprehensive guide with essential recipes and solutions for PyTorch and the ecosystem. The book covers PyTorch deep learning development from beginner to expert in well-written chapters. The book simplifies neural networks, training, optimization, and deployment strategies chapter by chapter. The first part covers PyTorch basics, data preprocessing, tokenization, and vocabulary. Next, it builds CNN, RNN, Attentional Layers, and Graph Neural Networks. The book emphasizes distributed training, scalability, and multi-GPU training for real-world scenarios. Practical embedded systems, mobile development, and model compression solutions illuminate on-device AI applications. However, the book goes beyond code and algorithms. It also offers hands-on troubleshooting and debugging for end-to-end deep learning development. 'PyTorch Cookbook' covers data collection to deployment errors and provides detailed solutions to overcome them. This book integrates PyTorch with ONNX Runtime, PySyft, Pyro, Deep Graph Library (DGL), Fastai, and Ignite, showing you how to use them for your projects. This book covers real-time inferencing, cluster training, model serving, and cross-platform compatibility. You'll learn to code deep learning architectures, work with neural networks, and manage deep learning development stages. 'PyTorch Cookbook' is a complete manual that will help you become a confident PyTorch developer and a smart Deep Learning engineer. Its clear examples and practical advice make it a must-read for anyone looking to use PyTorch and advance in deep learning. Key Learnings Comprehensive introduction to PyTorch, equipping readers with foundational skills for deep learning. Practical demonstrations of various neural networks, enhancing understanding through hands-on practice. Exploration of Graph Neural Networks (GNN), opening doors to cutting-edge research fields. In-depth insight into PyTorch tools and libraries, expanding capabilities beyond core functions. Step-by-step guidance on distributed training, enabling scalable deep learning and AI projects. Real-world application insights, bridging the gap between theoretical knowledge and practical execution. Focus on mobile and embedded development with PyTorch, leading to on-device AI. Emphasis on error handling and troubleshooting, preparing readers for real-world challenges. Advanced topics like real-time inferencing and model compression, providing future ready skill. Table of Content Introduction to PyTorch 2.0 Deep Learning Building Blocks Convolutional Neural Networks Recurrent Neural Networks Natural Language Processing Graph Neural Networks (GNNs) Working with Popular PyTorch Tools Distributed Training and Scalability Mobile and Embedded Development


Artificial Intelligence and Mobile Services – AIMS 2019

Artificial Intelligence and Mobile Services – AIMS 2019

Author: De Wang

Publisher: Springer

Published: 2019-06-19

Total Pages: 198

ISBN-13: 3030233677

DOWNLOAD EBOOK

This book constitutes the proceedings of the 8th International Conference on Artificial Intelligence and Mobile Services, AIMS 2019, held as part of SCF 2019, in San Diego, CA, USA, in June 2019. The 12 full papers and one short paper presented were carefully reviewed and selected from 29 submissions. The papers cover different aspects of mobile services from business management to computing systems, algorithms and applications. They promote technological technological innovations in research and development of mobile services, including, but not limited to, wireless and sensor networks, mobile and wearable computing, mobile enterprise and eCommerce, ubiquitous collaborative and social services, machine-to-machine and Internet-of-things, clouds, cyber-physical integration, and big data analytics for mobility-enabled services.


Web, Artificial Intelligence and Network Applications

Web, Artificial Intelligence and Network Applications

Author: Leonard Barolli

Publisher: Springer

Published: 2019-03-14

Total Pages: 1217

ISBN-13: 3030150356

DOWNLOAD EBOOK

The aim of the book is to provide latest research findings, innovative research results, methods and development techniques from both theoretical and practical perspectives related to the emerging areas of Web Computing, Intelligent Systems and Internet Computing. As the Web has become a major source of information, techniques and methodologies that extract quality information are of paramount importance for many Web and Internet applications. Data mining and knowledge discovery play key roles in many of today’s prominent Web applications such as e-commerce and computer security. Moreover, the outcome of Web services delivers a new platform for enabling service-oriented systems. The emergence of large scale distributed computing paradigms, such as Cloud Computing and Mobile Computing Systems, has opened many opportunities for collaboration services, which are at the core of any Information System. Artificial Intelligence (AI) is an area of computer science that build intelligent systems and algorithms that work and react like humans. The AI techniques and computational intelligence are powerful tools for learning, adaptation, reasoning and planning. They have the potential to become enabling technologies for the future intelligent networks. Recent research in the field of intelligent systems, robotics, neuroscience, artificial intelligence and cognitive sciences are very important for the future development and innovation of Web and Internet applications.