This interdisciplinary approach to computer modeling addresses both traditional simulationists seeking the greater representational flexibility and ease of use that AI techniques offer, and computer scientists seeking the greater power and realism that rigorous simulation techniques can provide. First section reveals the theoretical underpinnings of AI and simulation. Second section describes application of simulation techniques to current problems in AI research. Third section discusses application of AI methods to simulation.
Qualitative models are better able than traditional models to express states of incomplete knowledge about continuous mechanisms. Qualitative simulation guarantees to find all possible behaviors consistent with the knowledge in the model. This expressive power and coverage is important in problem solving for diagnosis, design, monitoring, explanation, and other applications of artificial intelligence.
Simulation and synthesis are core parts of the future of AI and machine learning. Consider: programmers, data scientists, and machine learning engineers can create the brain of a self-driving car without the car. Rather than use information from the real world, you can synthesize artificial data using simulations to train traditional machine learning models.That’s just the beginning. With this practical book, you’ll explore the possibilities of simulation- and synthesis-based machine learning and AI, concentrating on deep reinforcement learning and imitation learning techniques. AI and ML are increasingly data driven, and simulations are a powerful, engaging way to unlock their full potential. You'll learn how to: Design an approach for solving ML and AI problems using simulations with the Unity engine Use a game engine to synthesize images for use as training data Create simulation environments designed for training deep reinforcement learning and imitation learning models Use and apply efficient general-purpose algorithms for simulation-based ML, such as proximal policy optimization Train a variety of ML models using different approaches Enable ML tools to work with industry-standard game development tools, using PyTorch, and the Unity ML-Agents and Perception Toolkits
This book aims to provide a description of these new Artificial Intelligence technologies and approaches to the modeling and simulation of complex systems, as well as an overview of the latest scientific efforts in this field such as the platforms and/or the software tools for smart modeling and simulating complex systems. These tasks are difficult to accomplish using traditional computational approaches due to the complex relationships of components and distributed features of resources, as well as the dynamic work environments. In order to effectively model the complex systems, intelligent technologies such as multi-agent systems and smart grids are employed to model and simulate the complex systems in the areas of ecosystem, social and economic organization, web-based grid service, transportation systems, power systems and evacuation systems.
During the 1990s the computing industry has witnessed many advances in mobile and enterprise computing. Many of these advances have been made possible by developments in the areas such as modeling, simulation, and artificial intelligence. Within the different areas of enterprise computing - such as manufacturing, health organisation, and commerce - the need for a disciplined, multifaceted, and unified approach to modeling and simulation has become essential. This new book provides a forum for scientists, academics, and professionals to present their latest research findings from the various fields: artificial intelligence, collaborative/distributed computing, modeling, and simulation.
This book creates the emergence of disruptive technologies that have led to a significant change in the role of mathematics and statistics for problem solving, with the use of sophisticated software and hardware in solving complex systems and process. In the era of digital technology, mathematics and statistics need to be highly relevant to be able to cater for the needs of IR4.0 such as big data analytics, simulation, autonomous system, and cloud computing. Motivated by this development, a total of 26 chapters are contributed by respectable experts for this book. The main scope of the book is to conduct a new system of modeling and simulations on solving differential equations, nonlinear equations, energy, epidemiology, and risk assessment. This book is of interest for postgraduate students, researchers as well as other scientists who are working in numerical modeling and simulations based on efficient mathematical and statistical techniques.
Artificial Intelligence for Computational Modeling of the Heart presents recent research developments towards streamlined and automatic estimation of the digital twin of a patient's heart by combining computational modeling of heart physiology and artificial intelligence. The book first introduces the major aspects of multi-scale modeling of the heart, along with the compromises needed to achieve subject-specific simulations. Reader will then learn how AI technologies can unlock robust estimations of cardiac anatomy, obtain meta-models for real-time biophysical computations, and estimate model parameters from routine clinical data. Concepts are all illustrated through concrete clinical applications.
This book constitutes the refereed proceedings of the 4th International Conference on Simulation, Modeling, and Programming for Autonomous Robots, SIMPAR 2014, held in Bergamo, Italy, in October 2014. The 49 revised full papers presented were carefully reviewed and selected from 62 submissions. The papers are organized in topical sections on simulation, modeling, programming, architectures, methods and tools, and systems and applications.
This book constitutes the refereed proceedings of the Third International Conference on Simulation, Modeling, and Programming for Autonomous Robots, SIMPAR 2012, held in Tsukuba, Japan, in November 2012. The 33 revised full papers and presented together with 3 invited talks were carefully reviewed and selected from 46 submissions. Ten papers describe design of complex behaviors of autonomous robots, 9 address software layers, 8 papers refer to related modeling and learning. The papers are organized in topical sections on mobile robots, software modeling and architecture and humanoid and biped robots.
This encyclopedia provides an authoritative single source for understanding and applying the concepts of complexity theory together with the tools and measures for analyzing complex systems in all fields of science and engineering. It links fundamental concepts of mathematics and computational sciences to applications in the physical sciences, engineering, biomedicine, economics and the social sciences.