A collective point of view on the role of artificial intelligence paradigm in logic design is introduced. The book reveals new horizons of logic design tools on the technologies of the near future. The contributors of the book are twenty recognized leaders in the field from seven research centres; they are all experienced in practical electronic design and in teaching engineering courses.
There are three outstanding points of this book. First: for the first time, a collective point of view on the role of artificial intelligence paradigm in logic design is introduced. Second, the book reveals new horizons of logic design tools on the technologies of the near future. Finally, the contributors of the book are twenty recognizable leaders in the field from the seven research centres. The chapters of the book have been carefully reviewed by equally qualified experts. All contributors are experienced in practical electronic design and in teaching engineering courses. Thus, the book's style is accessible to graduate students, practical engineers and researchers.
Logic for Artificial Intelligence and Information Technology is based on student notes used to teach logic to second year undergraduates and Artificial Intelligence to graduate students at the University of London since1984, first at Imperial College and later at King's College. Logic has been applied to a wide variety of subjects such as theoretical computer science, software engineering, hardware design, logic programming, computational linguistics and artificial intelligence. In this way it has served to stimulate the research for clear conceptual foundations. Over the past 20 years many extensions of classical logic such as temporal, modal, relevance, fuzzy, probabilistic and non-monotoinic logics have been widely used in computer science and artificial intelligence, therefore requiring new formulations of classical logic, which can be modified to yield the effect of the new applied logics. The text introduces classical logic in a goal directed way which can easily deviate into discussing other applied logics. It defines the many types of logics and differences between them. Dov Gabbay, FRSC, FAvH, FRSA, FBCS, is Augustus De Morgan Professor of Logic at the University of London. He has written over 300 papers in logic and over 20 books. He is Editor-in-Chief of several leading journals and has published over 50 handbooks of logic volumes. He is a world authority on applied logics and is one of the directors and founder of the UK charity the International Federation of Computational Logic
New, updated and expanded topics in the fourth edition include: EBCDIC, Grey code, practical applications of flip-flops, linear and shaft encoders, memory elements and FPGAs. The section on fault-finding has been expanded. A new chapter is dedicated to the interface between digital components and analog voltages. - A highly accessible, comprehensive and fully up to date digital systems text - A well known and respected text now revamped for current courses - Part of the Newnes suite of texts for HND/1st year modules
This book is the most comprehensive description of the decades-long Non-Axiomatic Reasoning System (NARS) project, including its philosophical foundation, methodological consideration, conceptual design details, implications in the related fields, and its similarities and differences to many related works in cognitive science. While most current works in Artificial Intelligence (AI) focus on individual aspects of intelligence and cognition, NARS is designed and developed to attack the AI problem as a whole.
The applications of Artificial Intelligence lie all around us; in our homes, schools and offices, in our cinemas, in art galleries and - not least - on the Internet. The results of Artificial Intelligence have been invaluable to biologists, psychologists, and linguists in helping to understand the processes of memory, learning, and language from a fresh angle. As a concept, Artificial Intelligence has fuelled and sharpened the philosophical debates concerning the nature of the mind, intelligence, and the uniqueness of human beings. In this Very Short Introduction , Margaret A. Boden reviews the philosophical and technological challenges raised by Artificial Intelligence, considering whether programs could ever be really intelligent, creative or even conscious, and shows how the pursuit of Artificial Intelligence has helped us to appreciate how human and animal minds are possible. ABOUT THE SERIES: The Very Short Introductions series from Oxford University Press contains hundreds of titles in almost every subject area. These pocket-sized books are the perfect way to get ahead in a new subject quickly. Our expert authors combine facts, analysis, perspective, new ideas, and enthusiasm to make interesting and challenging topics highly readable.
This volume contains the proceedings of the Eighth Austrian Artificial Intelligence Conference, held in Linz, Austria, in June 1993. The focus of the conference was on "Fuzzy Logic in Artificial Intelligence". The volume contains abstracts of two invited talks and full versions of 17 carefully selected papers. The invited talks were: "The role of fuzzylogic and soft computing in the conception and design of intelligent systems" by Lotfi A. Zadeh, and "A contextual approach for AI systems development" by Irina V. Ezhkova. The contributed papers are grouped into sections on theoretical issues, machine learning, expert systems, robotics and control, applications to medicine, and applications to car driving. Additionally, the volume contains descriptions of the four workshops that took place during the conference.
Today's engineers will confront the challenge of a new computing paradigm, relying on micro- and nanoscale devices. Logic Design of NanoICs builds a foundation for logic in nanodimensions and guides you in the design and analysis of nanoICs using CAD. The authors present data structures developed toward applications rather than a purely theoretical treatment. Requiring only basic logic and circuits background, Logic Design of NanoICs draws connections between traditional approaches to design and modern design in nanodimensions. The book begins with an introduction to the directions and basic methodology of logic design at the nanoscale, then proceeds to nanotechnologies and CAD, graphical representation of switching functions and networks, word-level and linear word-level data structures, 3-D topologies based on hypercubes, multilevel circuit design, and fault-tolerant computation in hypercube-like structures. The authors propose design solutions and techniques, going beyond the underlying technology to provide more applied knowledge. This design-oriented reference is written for engineers interested in developing the next generation of integrated circuitry, illustrating the discussion with approximately 250 figures and tables, 100 equations, 250 practical examples, and 100 problems. Each chapter concludes with a summary, references, and a suggested reading section.
Artificial and Mathematical Theory of Computation is a collection of papers that discusses the technical, historical, and philosophical problems related to artificial intelligence and the mathematical theory of computation. Papers cover the logical approach to artificial intelligence; knowledge representation and common sense reasoning; automated deduction; logic programming; nonmonotonic reasoning and circumscription. One paper suggests that the design of parallel programming languages will invariably become more sophisticated as human skill in programming and software developments improves to attain faster running programs. An example of metaprogramming to systems concerns the design and control of operations of factory devices, such as robots and numerically controlled machine tools. Metaprogramming involves two design aspects: that of the activity of a single device and that of the interaction with other devices. One paper cites the application of artificial intelligence pertaining to the project "proof checker for first-order logic" at the Stanford Artificial Intelligence Laboratory. Another paper explains why the bisection algorithm widely used in computer science does not work. This book can prove valuable to engineers and researchers of electrical, computer, and mechanical engineering, as well as, for computer programmers and designers of industrial processes.
Most subfields of computer science have an interface layer via which applications communicate with the infrastructure, and this is key to their success (e.g., the Internet in networking, the relational model in databases, etc.). So far this interface layer has been missing in AI. First-order logic and probabilistic graphical models each have some of the necessary features, but a viable interface layer requires combining both. Markov logic is a powerful new language that accomplishes this by attaching weights to first-order formulas and treating them as templates for features of Markov random fields. Most statistical models in wide use are special cases of Markov logic, and first-order logic is its infinite-weight limit. Inference algorithms for Markov logic combine ideas from satisfiability, Markov chain Monte Carlo, belief propagation, and resolution. Learning algorithms make use of conditional likelihood, convex optimization, and inductive logic programming. Markov logic has been successfully applied to problems in information extraction and integration, natural language processing, robot mapping, social networks, computational biology, and others, and is the basis of the open-source Alchemy system. Table of Contents: Introduction / Markov Logic / Inference / Learning / Extensions / Applications / Conclusion