Artificial Intelligence for Signal Processing and Wireless Communication

Artificial Intelligence for Signal Processing and Wireless Communication

Author: Abhinav Sharma

Publisher: de Gruyter

Published: 2022-04-18

Total Pages: 240

ISBN-13: 9783110738827

DOWNLOAD EBOOK

Without mathematics no science would survive. This especially applies to the engineering sciences which highly depend on the applications of mathematics and mathematical tools such as optimization techniques, finite element methods, differential equations, fluid dynamics, mathematical modelling, and simulation. Neither optimization in engineering, nor the performance of safety-critical system and system security; nor high assurance software architecture and design would be possible without the development of mathematical applications. De Gruyter Series on the Applications of Mathematics in Engineering and Information Sciences (AMEIS) focusses on the latest applications of engineering and information technology that are possible only with the use of mathematical methods. By identifying the gaps in knowledge of engineering applications the AMEIS series fosters the international interchange between the sciences and keeps the reader informed about the latest developments.


Machine Learning in Signal Processing

Machine Learning in Signal Processing

Author: Sudeep Tanwar

Publisher: CRC Press

Published: 2021-12-10

Total Pages: 488

ISBN-13: 1000487814

DOWNLOAD EBOOK

Machine Learning in Signal Processing: Applications, Challenges, and the Road Ahead offers a comprehensive approach toward research orientation for familiarizing signal processing (SP) concepts to machine learning (ML). ML, as the driving force of the wave of artificial intelligence (AI), provides powerful solutions to many real-world technical and scientific challenges. This book will present the most recent and exciting advances in signal processing for ML. The focus is on understanding the contributions of signal processing and ML, and its aim to solve some of the biggest challenges in AI and ML. FEATURES Focuses on addressing the missing connection between signal processing and ML Provides a one-stop guide reference for readers Oriented toward material and flow with regards to general introduction and technical aspects Comprehensively elaborates on the material with examples and diagrams This book is a complete resource designed exclusively for advanced undergraduate students, post-graduate students, research scholars, faculties, and academicians of computer science and engineering, computer science and applications, and electronics and telecommunication engineering.


Artificial Intelligence for Signal Processing and Wireless Communication

Artificial Intelligence for Signal Processing and Wireless Communication

Author: Abhinav Sharma

Publisher: Walter de Gruyter GmbH & Co KG

Published: 2022-04-04

Total Pages: 239

ISBN-13: 3110734656

DOWNLOAD EBOOK

This book focuses on artificial intelligence in the field of digital signal processing and wireless communication. The implementation of machine learning and deep learning in audio, image, and video processing is presented, while adaptive signal processing and biomedical signal processing are also explored through DL algorithms, as well as 5G and green communication. Finally, metaheuristic algorithms of related mathematical problems are explored.


Machine Learning for Future Wireless Communications

Machine Learning for Future Wireless Communications

Author: Fa-Long Luo

Publisher: John Wiley & Sons

Published: 2020-02-10

Total Pages: 490

ISBN-13: 1119562252

DOWNLOAD EBOOK

A comprehensive review to the theory, application and research of machine learning for future wireless communications In one single volume, Machine Learning for Future Wireless Communications provides a comprehensive and highly accessible treatment to the theory, applications and current research developments to the technology aspects related to machine learning for wireless communications and networks. The technology development of machine learning for wireless communications has grown explosively and is one of the biggest trends in related academic, research and industry communities. Deep neural networks-based machine learning technology is a promising tool to attack the big challenge in wireless communications and networks imposed by the increasing demands in terms of capacity, coverage, latency, efficiency flexibility, compatibility, quality of experience and silicon convergence. The author – a noted expert on the topic – covers a wide range of topics including system architecture and optimization, physical-layer and cross-layer processing, air interface and protocol design, beamforming and antenna configuration, network coding and slicing, cell acquisition and handover, scheduling and rate adaption, radio access control, smart proactive caching and adaptive resource allocations. Uniquely organized into three categories: Spectrum Intelligence, Transmission Intelligence and Network Intelligence, this important resource: Offers a comprehensive review of the theory, applications and current developments of machine learning for wireless communications and networks Covers a range of topics from architecture and optimization to adaptive resource allocations Reviews state-of-the-art machine learning based solutions for network coverage Includes an overview of the applications of machine learning algorithms in future wireless networks Explores flexible backhaul and front-haul, cross-layer optimization and coding, full-duplex radio, digital front-end (DFE) and radio-frequency (RF) processing Written for professional engineers, researchers, scientists, manufacturers, network operators, software developers and graduate students, Machine Learning for Future Wireless Communications presents in 21 chapters a comprehensive review of the topic authored by an expert in the field.


Machine Learning for Signal Processing

Machine Learning for Signal Processing

Author: Max A. Little

Publisher: Oxford University Press, USA

Published: 2019

Total Pages: 378

ISBN-13: 0198714939

DOWNLOAD EBOOK

Describes in detail the fundamental mathematics and algorithms of machine learning (an example of artificial intelligence) and signal processing, two of the most important and exciting technologies in the modern information economy. Builds up concepts gradually so that the ideas and algorithms can be implemented in practical software applications.


Wireless AI

Wireless AI

Author: K. J. Ray Liu

Publisher: Cambridge University Press

Published: 2019-10-03

Total Pages: 623

ISBN-13: 1108571026

DOWNLOAD EBOOK

With this groundbreaking text, discover how wireless artificial intelligence (AI) can be used to determine position at centimeter level, sense motion and vital signs, and identify events and people. Using a highly innovative approach that employs existing wireless equipment and signal processing techniques to turn multipaths into virtual antennas, combined with the physical principle of time reversal and machine learning, it covers fundamental theory, extensive experimental results, and real practical use cases developed for products and applications. Topics explored include indoor positioning and tracking, wireless sensing and analytics, wireless power transfer and energy efficiency, 5G and next-generation communications, and the connection of large numbers of heterogeneous IoT devices of various bandwidths and capabilities. Demo videos accompanying the book online enhance understanding of these topics. Providing a unified framework for wireless AI, this is an excellent text for graduate students, researchers, and professionals working in wireless sensing, positioning, IoT, machine learning, signal processing and wireless communications.


Intelligent Sensor Networks

Intelligent Sensor Networks

Author: Fei Hu

Publisher: CRC Press

Published: 2012-12-15

Total Pages: 676

ISBN-13: 1439892814

DOWNLOAD EBOOK

Although governments worldwide have invested significantly in intelligent sensor network research and applications, few books cover intelligent sensor networks from a machine learning and signal processing perspective. Filling this void, Intelligent Sensor Networks: The Integration of Sensor Networks, Signal Processing and Machine Learning focuses on the close integration of sensing, networking, and smart signal processing via machine learning. Based on the world-class research of award-winning authors, the book provides a firm grounding in the fundamentals of intelligent sensor networks, including compressive sensing and sampling, distributed signal processing, and intelligent signal learning. Presenting recent research results of world-renowned sensing experts, the book is organized into three parts: Machine Learning—describes the application of machine learning and other AI principles in sensor network intelligence—covering smart sensor/transducer architecture and data representation for intelligent sensors Signal Processing—considers the optimization of sensor network performance based on digital signal processing techniques—including cross-layer integration of routing and application-specific signal processing as well as on-board image processing in wireless multimedia sensor networks for intelligent transportation systems Networking—focuses on network protocol design in order to achieve an intelligent sensor networking—covering energy-efficient opportunistic routing protocols for sensor networking and multi-agent-driven wireless sensor cooperation Maintaining a focus on "intelligent" designs, the book details signal processing principles in sensor networks. It elaborates on critical platforms for intelligent sensor networks and illustrates key applications—including target tracking, object identification, and structural health monitoring. It also includes a paradigm for validating the extent of spatiotemporal associations among data sources to enhance data cleaning in sensor networks, a sensor stream reduction application, and also considers the use of Kalman filters for attack detection in a water system sensor network that consists of water level sensors and velocity sensors.


Machine Intelligence and Signal Processing

Machine Intelligence and Signal Processing

Author: Sonali Agarwal

Publisher: Springer Nature

Published: 2020-02-25

Total Pages: 464

ISBN-13: 981151366X

DOWNLOAD EBOOK

This book features selected high-quality research papers presented at the International Conference on Machine Intelligence and Signal Processing (MISP 2019), held at the Indian Institute of Technology, Allahabad, India, on September 7–10, 2019. The book covers the latest advances in the fields of machine learning, big data analytics, signal processing, computational learning theory, and their real-time applications. The topics covered include support vector machines (SVM) and variants like least-squares SVM (LS-SVM) and twin SVM (TWSVM), extreme learning machine (ELM), artificial neural network (ANN), and other areas in machine learning. Further, it discusses the real-time challenges involved in processing big data and adapting the algorithms dynamically to improve the computational efficiency. Lastly, it describes recent developments in processing signals, for instance, signals generated from IoT devices, smart systems, speech, and videos and addresses biomedical signal processing: electrocardiogram (ECG) and electroencephalogram (EEG).


Artificial Intelligence for Communications and Networks

Artificial Intelligence for Communications and Networks

Author: Shuai Han

Publisher: Springer

Published: 2019-07-04

Total Pages: 525

ISBN-13: 3030229718

DOWNLOAD EBOOK

This two-volume set LNICST 286-287 constitutes the post-conference proceedings of the First EAI International Conference on Artificial Intelligence for Communications and Networks, AICON 2019, held in Harbin, China, in May 2019. The 93 full papers were carefully reviewed and selected from 152 submissions. The papers are organized in topical sections on artificial intelligence, mobile network, deep learning, machine learning, wireless communication, cognitive radio, internet of things, big data, communication system, pattern recognition, channel model, beamforming, signal processing, 5G, mobile management, resource management, wireless position.


Machine Learning, Deep Learning and Computational Intelligence for Wireless Communication

Machine Learning, Deep Learning and Computational Intelligence for Wireless Communication

Author: E. S. Gopi

Publisher: Springer Nature

Published: 2021-05-28

Total Pages: 643

ISBN-13: 9811602891

DOWNLOAD EBOOK

This book is a collection of best selected research papers presented at the Conference on Machine Learning, Deep Learning and Computational Intelligence for Wireless Communication (MDCWC 2020) held during October 22nd to 24th 2020, at the Department of Electronics and Communication Engineering, National Institute of Technology Tiruchirappalli, India. The presented papers are grouped under the following topics (a) Machine Learning, Deep learning and Computational intelligence algorithms (b)Wireless communication systems and (c) Mobile data applications and are included in the book. The topics include the latest research and results in the areas of network prediction, traffic classification, call detail record mining, mobile health care, mobile pattern recognition, natural language processing, automatic speech processing, mobility analysis, indoor localization, wireless sensor networks (WSN), energy minimization, routing, scheduling, resource allocation, multiple access, power control, malware detection, cyber security, flooding attacks detection, mobile apps sniffing, MIMO detection, signal detection in MIMO-OFDM, modulation recognition, channel estimation, MIMO nonlinear equalization, super-resolution channel and direction-of-arrival estimation. The book is a rich reference material for academia and industry.