Arithmetic Geometry, Number Theory, and Computation

Arithmetic Geometry, Number Theory, and Computation

Author: Jennifer S. Balakrishnan

Publisher: Springer Nature

Published: 2022-03-15

Total Pages: 587

ISBN-13: 3030809145

DOWNLOAD EBOOK

This volume contains articles related to the work of the Simons Collaboration “Arithmetic Geometry, Number Theory, and Computation.” The papers present mathematical results and algorithms necessary for the development of large-scale databases like the L-functions and Modular Forms Database (LMFDB). The authors aim to develop systematic tools for analyzing Diophantine properties of curves, surfaces, and abelian varieties over number fields and finite fields. The articles also explore examples important for future research. Specific topics include● algebraic varieties over finite fields● the Chabauty-Coleman method● modular forms● rational points on curves of small genus● S-unit equations and integral points.


Number Theory and Geometry: An Introduction to Arithmetic Geometry

Number Theory and Geometry: An Introduction to Arithmetic Geometry

Author: Álvaro Lozano-Robledo

Publisher: American Mathematical Soc.

Published: 2019-03-21

Total Pages: 488

ISBN-13: 147045016X

DOWNLOAD EBOOK

Geometry and the theory of numbers are as old as some of the oldest historical records of humanity. Ever since antiquity, mathematicians have discovered many beautiful interactions between the two subjects and recorded them in such classical texts as Euclid's Elements and Diophantus's Arithmetica. Nowadays, the field of mathematics that studies the interactions between number theory and algebraic geometry is known as arithmetic geometry. This book is an introduction to number theory and arithmetic geometry, and the goal of the text is to use geometry as the motivation to prove the main theorems in the book. For example, the fundamental theorem of arithmetic is a consequence of the tools we develop in order to find all the integral points on a line in the plane. Similarly, Gauss's law of quadratic reciprocity and the theory of continued fractions naturally arise when we attempt to determine the integral points on a curve in the plane given by a quadratic polynomial equation. After an introduction to the theory of diophantine equations, the rest of the book is structured in three acts that correspond to the study of the integral and rational solutions of linear, quadratic, and cubic curves, respectively. This book describes many applications including modern applications in cryptography; it also presents some recent results in arithmetic geometry. With many exercises, this book can be used as a text for a first course in number theory or for a subsequent course on arithmetic (or diophantine) geometry at the junior-senior level.


Arithmetic Geometry and Number Theory

Arithmetic Geometry and Number Theory

Author: Lin Weng

Publisher: World Scientific

Published: 2006

Total Pages: 414

ISBN-13: 981256814X

DOWNLOAD EBOOK

Mathematics is very much a part of our culture; and this invaluable collection serves the purpose of developing the branches involved, popularizing the existing theories and guiding our future explorations.More precisely, the goal is to bring the reader to the frontier of current developments in arithmetic geometry and number theory through the works of Deninger-Werner in vector bundles on curves over p-adic fields; of Jiang on local gamma factors in automorphic representations; of Weng on Deligne pairings and Takhtajan-Zograf metrics; of Yoshida on CM-periods; of Yu on transcendence of special values of zetas over finite fields. In addition, the lecture notes presented by Weng at the University of Toronto from October to November 2005 explain basic ideas and the reasons (not just the language and conclusions) behind Langlands' fundamental, yet notably difficult, works on the Eisenstein series and spectral decompositions.And finally, a brand new concept by Weng called the Geometric Arithmetic program that uses algebraic and/or analytic methods, based on geometric considerations, to develop the promising and yet to be cultivated land of global arithmetic that includes non-abelian Class Field Theory, Riemann Hypothesis and non-abelian Zeta and L Functions, etc.


Arithmetic Geometry

Arithmetic Geometry

Author: Clay Mathematics Institute. Summer School

Publisher: American Mathematical Soc.

Published: 2009

Total Pages: 570

ISBN-13: 0821844768

DOWNLOAD EBOOK

Based on survey lectures given at the 2006 Clay Summer School on Arithmetic Geometry at the Mathematics Institute of the University of Gottingen, this tile is intended for graduate students and recent PhD's. It introduces readers to modern techniques and conjectures at the interface of number theory and algebraic geometry.


Arithmetic Geometry

Arithmetic Geometry

Author: Nancy Childress

Publisher: American Mathematical Soc.

Published: 1994

Total Pages: 234

ISBN-13: 0821851748

DOWNLOAD EBOOK

This book resulted from a research conference in arithmetic geometry held at Arizona State University in March 1993. The papers describe important recent advances in arithmetic geometry. Several articles deal with p-adic modular forms of half-integral weight and their roles in arithmetic geometry. The volume also contains material on the Iwasawa theory of cyclotomic fields, elliptic curves, and function fields, including p-adic L-functions and p-adic height pairings. Other articles focus on the inverse Galois problem, fields of definition of abelian varieties with real multiplication, and computation of torsion groups of elliptic curves. The volume also contains a previously unpublished letter of John Tate, written to J.-P. Serre in 1973, concerning Serre's conjecture on Galois representations. With contributions by some of the leading experts in the field, this book provides a look at the state of the art in arithmetic geometry.


Arithmetic Geometry: Computation and Applications

Arithmetic Geometry: Computation and Applications

Author: Yves Aubry

Publisher: American Mathematical Soc.

Published: 2019-01-11

Total Pages: 175

ISBN-13: 1470442124

DOWNLOAD EBOOK

For thirty years, the biennial international conference AGC T (Arithmetic, Geometry, Cryptography, and Coding Theory) has brought researchers to Marseille to build connections between arithmetic geometry and its applications, originally highlighting coding theory but more recently including cryptography and other areas as well. This volume contains the proceedings of the 16th international conference, held from June 19–23, 2017. The papers are original research articles covering a large range of topics, including weight enumerators for codes, function field analogs of the Brauer–Siegel theorem, the computation of cohomological invariants of curves, the trace distributions of algebraic groups, and applications of the computation of zeta functions of curves. Despite the varied topics, the papers share a common thread: the beautiful interplay between abstract theory and explicit results.


Computational Algebraic Number Theory

Computational Algebraic Number Theory

Author: M.E. Pohst

Publisher: Springer Science & Business Media

Published: 1993-09

Total Pages: 108

ISBN-13: 9783764329136

DOWNLOAD EBOOK

Computational algebraic number theory has been attracting broad interest in the last few years due to its potential applications in coding theory and cryptography. For this reason, the Deutsche Mathematiker-Vereinigung initiated an introductory graduate seminar on this topic in Dusseldorf. The lectures given there by the author served as the basis for this book which allows fast access to the state of the art in this area. Special emphasis has been placed on practical algorithms - all developed in the last five years - for the computation of integral bases, the unit group and the class group of arbitrary algebraic number fields. The workshops organized by the Gesselschaft fur mathematische Forschung in cooperation with the Deutsche Mathematiker-Vereinigung (German Mathematics Society) are intended to help, in particular, students and younger mathematicians, to obtain an introduction to fields of current research. Through the means of these well-organized seminars, scientists from other fields can also be introduced to new mathematical ideas. The publication of these workshops in the series DMV SEMINAR will make the material available to an even larger audience.


Directions in Number Theory

Directions in Number Theory

Author: Ellen E. Eischen

Publisher: Springer

Published: 2016-09-26

Total Pages: 351

ISBN-13: 3319309765

DOWNLOAD EBOOK

Exploring the interplay between deep theory and intricate computation, this volume is a compilation of research and survey papers in number theory, written by members of the Women In Numbers (WIN) network, principally by the collaborative research groups formed at Women In Numbers 3, a conference at the Banff International Research Station in Banff, Alberta, on April 21-25, 2014. The papers span a wide range of research areas: arithmetic geometry; analytic number theory; algebraic number theory; and applications to coding and cryptography. The WIN conference series began in 2008, with the aim of strengthening the research careers of female number theorists. The series introduced a novel research-mentorship model: women at all career stages, from graduate students to senior members of the community, joined forces to work in focused research groups on cutting-edge projects designed and led by experienced researchers. The goals for Women In Numbers 3 were to establish ambitious new collaborations between women in number theory, to train junior participants about topics of current importance, and to continue to build a vibrant community of women in number theory. Forty-two women attended the WIN3 workshop, including 15 senior and mid-level faculty, 15 junior faculty and postdocs, and 12 graduate students.


A Course in Computational Algebraic Number Theory

A Course in Computational Algebraic Number Theory

Author: Henri Cohen

Publisher: Springer Science & Business Media

Published: 2013-04-17

Total Pages: 556

ISBN-13: 3662029456

DOWNLOAD EBOOK

A description of 148 algorithms fundamental to number-theoretic computations, in particular for computations related to algebraic number theory, elliptic curves, primality testing and factoring. The first seven chapters guide readers to the heart of current research in computational algebraic number theory, including recent algorithms for computing class groups and units, as well as elliptic curve computations, while the last three chapters survey factoring and primality testing methods, including a detailed description of the number field sieve algorithm. The whole is rounded off with a description of available computer packages and some useful tables, backed by numerous exercises. Written by an authority in the field, and one with great practical and teaching experience, this is certain to become the standard and indispensable reference on the subject.


Hilbert's Tenth Problem: Relations with Arithmetic and Algebraic Geometry

Hilbert's Tenth Problem: Relations with Arithmetic and Algebraic Geometry

Author: Jan Denef

Publisher: American Mathematical Soc.

Published: 2000

Total Pages: 384

ISBN-13: 0821826220

DOWNLOAD EBOOK

This book is the result of a meeting that took place at the University of Ghent (Belgium) on the relations between Hilbert's tenth problem, arithmetic, and algebraic geometry. Included are written articles detailing the lectures that were given as well as contributed papers on current topics of interest. The following areas are addressed: an historical overview of Hilbert's tenth problem, Hilbert's tenth problem for various rings and fields, model theory and local-global principles, including relations between model theory and algebraic groups and analytic geometry, conjectures in arithmetic geometry and the structure of diophantine sets, for example with Mazur's conjecture, Lang's conjecture, and Bücchi's problem, and results on the complexity of diophantine geometry, highlighting the relation to the theory of computation. The volume allows the reader to learn and compare different approaches (arithmetical, geometrical, topological, model-theoretical, and computational) to the general structural analysis of the set of solutions of polynomial equations. It would make a nice contribution to graduate and advanced graduate courses on logic, algebraic geometry, and number theory