Arbitrage Theory in Continuous Time

Arbitrage Theory in Continuous Time

Author: Tomas Björk

Publisher: OUP Oxford

Published: 2009-08-06

Total Pages: 600

ISBN-13: 0191610291

DOWNLOAD EBOOK

The third edition of this popular introduction to the classical underpinnings of the mathematics behind finance continues to combine sound mathematical principles with economic applications. Concentrating on the probabilistic theory of continuous arbitrage pricing of financial derivatives, including stochastic optimal control theory and Merton's fund separation theory, the book is designed for graduate students and combines necessary mathematical background with a solid economic focus. It includes a solved example for every new technique presented, contains numerous exercises, and suggests further reading in each chapter. In this substantially extended new edition Bjork has added separate and complete chapters on the martingale approach to optimal investment problems, optimal stopping theory with applications to American options, and positive interest models and their connection to potential theory and stochastic discount factors. More advanced areas of study are clearly marked to help students and teachers use the book as it suits their needs.


Arbitrage Theory in Continuous Time

Arbitrage Theory in Continuous Time

Author: Tomas Björk

Publisher: OUP Oxford

Published: 2009-08-06

Total Pages: 552

ISBN-13: 019957474X

DOWNLOAD EBOOK

The third edition of this popular introduction to the classical underpinnings of the mathematics behind finance continues to combine sound mathematical principles with economic applications.Concentrating on the probabilistic theory of continuous arbitrage pricing of financial derivatives, including stochastic optimal control theory and Merton's fund separation theory, the book is designed for graduate students and combines necessary mathematical background with a solid economic focus. It includes a solved example for every new technique presented, contains numerous exercises, and suggests further reading in each chapter.In this substantially extended new edition Bjork has added separate and complete chapters on the martingale approach to optimal investment problems, optimal stopping theory with applications to American options, and positive interest models and their connection to potential theory and stochastic discount factors.More advanced areas of study are clearly marked to help students and teachers use the book as it suits their needs.


The Economics of Continuous-Time Finance

The Economics of Continuous-Time Finance

Author: Bernard Dumas

Publisher: MIT Press

Published: 2017-10-27

Total Pages: 641

ISBN-13: 0262036541

DOWNLOAD EBOOK

An introduction to economic applications of the theory of continuous-time finance that strikes a balance between mathematical rigor and economic interpretation of financial market regularities. This book introduces the economic applications of the theory of continuous-time finance, with the goal of enabling the construction of realistic models, particularly those involving incomplete markets. Indeed, most recent applications of continuous-time finance aim to capture the imperfections and dysfunctions of financial markets—characteristics that became especially apparent during the market turmoil that started in 2008. The book begins by using discrete time to illustrate the basic mechanisms and introduce such notions as completeness, redundant pricing, and no arbitrage. It develops the continuous-time analog of those mechanisms and introduces the powerful tools of stochastic calculus. Going beyond other textbooks, the book then focuses on the study of markets in which some form of incompleteness, volatility, heterogeneity, friction, or behavioral subtlety arises. After presenting solutions methods for control problems and related partial differential equations, the text examines portfolio optimization and equilibrium in incomplete markets, interest rate and fixed-income modeling, and stochastic volatility. Finally, it presents models where investors form different beliefs or suffer frictions, form habits, or have recursive utilities, studying the effects not only on optimal portfolio choices but also on equilibrium, or the price of primitive securities. The book strikes a balance between mathematical rigor and the need for economic interpretation of financial market regularities, although with an emphasis on the latter.


Continuous-Time Asset Pricing Theory

Continuous-Time Asset Pricing Theory

Author: Robert A. Jarrow

Publisher: Springer Nature

Published: 2021-07-30

Total Pages: 470

ISBN-13: 3030744108

DOWNLOAD EBOOK

Asset pricing theory yields deep insights into crucial market phenomena such as stock market bubbles. Now in a newly revised and updated edition, this textbook guides the reader through this theory and its applications to markets. The new edition features ​new results on state dependent preferences, a characterization of market efficiency and a more general presentation of multiple-factor models using only the assumptions of no arbitrage and no dominance. Taking an innovative approach based on martingales, the book presents advanced techniques of mathematical finance in a business and economics context, covering a range of relevant topics such as derivatives pricing and hedging, systematic risk, portfolio optimization, market efficiency, and equilibrium pricing models. For applications to high dimensional statistics and machine learning, new multi-factor models are given. This new edition integrates suicide trading strategies into the understanding of asset price bubbles, greatly enriching the overall presentation and further strengthening the book’s underlying theme of economic bubbles. Written by a leading expert in risk management, Continuous-Time Asset Pricing Theory is the first textbook on asset pricing theory with a martingale approach. Based on the author’s extensive teaching and research experience on the topic, it is particularly well suited for graduate students in business and economics with a strong mathematical background.


Arbitrage Theory in Continuous Time

Arbitrage Theory in Continuous Time

Author: Tomas Bjork

Publisher: Oxford University Press, USA

Published: 2020-01-16

Total Pages: 584

ISBN-13: 0198851618

DOWNLOAD EBOOK

The fourth edition of this widely used textbook on pricing and hedging of financial derivatives now also includes dynamic equilibrium theory and continues to combine sound mathematical principles with economic applications. Concentrating on the probabilistic theory of continuous time arbitrage pricing of financial derivatives, including stochastic optimal control theory and optimal stopping theory, Arbitrage Theory in Continuous Time is designed for graduate students in economics and mathematics, and combines the necessary mathematical background with a solid economic focus. It includes a solved example for every new technique presented, contains numerous exercises, and suggests further reading in each chapter. All concepts and ideas are discussed, not only from a mathematics point of view, but with lots of intuitive economic arguments. In the substantially extended fourth edition Tomas Bjork has added completely new chapters on incomplete markets, treating such topics as the Esscher transform, the minimal martingale measure, f-divergences, optimal investment theory for incomplete markets, and good deal bounds. This edition includes an entirely new section presenting dynamic equilibrium theory, covering unit net supply endowments models and the Cox-Ingersoll-Ross equilibrium factor model. Providing two full treatments of arbitrage theory-the classical delta hedging approach and the modern martingale approach-this book is written so that these approaches can be studied independently of each other, thus providing the less mathematically-oriented reader with a self-contained introduction to arbitrage theory and equilibrium theory, while at the same time allowing the more advanced student to see the full theory in action. This textbook is a natural choice for graduate students and advanced undergraduates studying finance and an invaluable introduction to mathematical finance for mathematicians and professionals in the market.


The Mathematics of Arbitrage

The Mathematics of Arbitrage

Author: Freddy Delbaen

Publisher: Springer Science & Business Media

Published: 2006-02-14

Total Pages: 371

ISBN-13: 9783540312994

DOWNLOAD EBOOK

Proof of the "Fundamental Theorem of Asset Pricing" in its general form by Delbaen and Schachermayer was a milestone in the history of modern mathematical finance and now forms the cornerstone of this book. Puts into book format a series of major results due mostly to the authors of this book. Embeds highest-level research results into a treatment amenable to graduate students, with introductory, explanatory background. Awaited in the quantitative finance community.


Stochastic Calculus for Finance I

Stochastic Calculus for Finance I

Author: Steven Shreve

Publisher: Springer Science & Business Media

Published: 2005-06-28

Total Pages: 212

ISBN-13: 9780387249681

DOWNLOAD EBOOK

Developed for the professional Master's program in Computational Finance at Carnegie Mellon, the leading financial engineering program in the U.S. Has been tested in the classroom and revised over a period of several years Exercises conclude every chapter; some of these extend the theory while others are drawn from practical problems in quantitative finance


PDE and Martingale Methods in Option Pricing

PDE and Martingale Methods in Option Pricing

Author: Andrea Pascucci

Publisher: Springer Science & Business Media

Published: 2011-04-15

Total Pages: 727

ISBN-13: 8847017815

DOWNLOAD EBOOK

This book offers an introduction to the mathematical, probabilistic and numerical methods used in the modern theory of option pricing. The text is designed for readers with a basic mathematical background. The first part contains a presentation of the arbitrage theory in discrete time. In the second part, the theories of stochastic calculus and parabolic PDEs are developed in detail and the classical arbitrage theory is analyzed in a Markovian setting by means of of PDEs techniques. After the martingale representation theorems and the Girsanov theory have been presented, arbitrage pricing is revisited in the martingale theory optics. General tools from PDE and martingale theories are also used in the analysis of volatility modeling. The book also contains an Introduction to Lévy processes and Malliavin calculus. The last part is devoted to the description of the numerical methods used in option pricing: Monte Carlo, binomial trees, finite differences and Fourier transform.


Markets with Transaction Costs

Markets with Transaction Costs

Author: Yuri Kabanov

Publisher: Springer Science & Business Media

Published: 2009-12-04

Total Pages: 306

ISBN-13: 3540681213

DOWNLOAD EBOOK

The book is the first monograph on this highly important subject.


Time-Inconsistent Control Theory with Finance Applications

Time-Inconsistent Control Theory with Finance Applications

Author: Tomas Björk

Publisher: Springer Nature

Published: 2021-11-02

Total Pages: 328

ISBN-13: 3030818438

DOWNLOAD EBOOK

This book is devoted to problems of stochastic control and stopping that are time inconsistent in the sense that they do not admit a Bellman optimality principle. These problems are cast in a game-theoretic framework, with the focus on subgame-perfect Nash equilibrium strategies. The general theory is illustrated with a number of finance applications. In dynamic choice problems, time inconsistency is the rule rather than the exception. Indeed, as Robert H. Strotz pointed out in his seminal 1955 paper, relaxing the widely used ad hoc assumption of exponential discounting gives rise to time inconsistency. Other famous examples of time inconsistency include mean-variance portfolio choice and prospect theory in a dynamic context. For such models, the very concept of optimality becomes problematic, as the decision maker’s preferences change over time in a temporally inconsistent way. In this book, a time-inconsistent problem is viewed as a non-cooperative game between the agent’s current and future selves, with the objective of finding intrapersonal equilibria in the game-theoretic sense. A range of finance applications are provided, including problems with non-exponential discounting, mean-variance objective, time-inconsistent linear quadratic regulator, probability distortion, and market equilibrium with time-inconsistent preferences. Time-Inconsistent Control Theory with Finance Applications offers the first comprehensive treatment of time-inconsistent control and stopping problems, in both continuous and discrete time, and in the context of finance applications. Intended for researchers and graduate students in the fields of finance and economics, it includes a review of the standard time-consistent results, bibliographical notes, as well as detailed examples showcasing time inconsistency problems. For the reader unacquainted with standard arbitrage theory, an appendix provides a toolbox of material needed for the book.