Aquatic Invertebrate Cell Culture is a very new field which has major applications in Aquaculture, Ecotoxicology and Pathology. In essence it is realised that pathogens behave differently in host cells than the impression gained from growth on agar plates. Another major application of invertebrate cell culture is an understanding of mechanisms involved in cellular and molecular responses to environmental change. This book aims to consider all relevant advances for the development of aquatic invertebrate cell culture.
This publication is based upon work from COST Action ’16203 MARISTEM Stem cells of marine/aquatic invertebrates: from basic research to innovative applications’, supported by COST (European Cooperation in Science and Technology). COST (European Cooperation in Science and Technology) is a funding agency for research and innovation networks. Our Actions help connect research initiatives across Europe and enable scientists to grow their ideas by sharing them with their peers. This boosts their research, career and innovation. www.cost.eu Aquatic invertebrates represent the largest biodiversity and the widest phylogenetic radiation on Earth, with more than 2 million known species. Up until a few years ago, their use as model organisms in biological research was limited by the paucity of omics data. Recently, the situation has rapidly changed and is still changing. Today, the genomes and various transcriptomes of many aquatic invertebrate species, as well as many recombinant proteins of invertebrate origin, are available. New technologies have revolutionized the available toolbox of research methodologies. This explains the rising interest of researchers in the use of aquatic invertebrates as reliable model organisms. In contrast to the prevalence of diverse oligopotent and unipotent stem cells in vertebrates, aquatic invertebrates (especially non-ecdysozoan invertebrates) exhibit multiple adult cell types with stem cell attributes characterized by multipotency and pluripotency; furthermore, these give rise to cell lineages characteristic of more than a single germ layer, sometimes with somatic and germ line potentials. In addition, unlike vertebrates, aquatic invertebrate adult stem cells are disseminated and widespread inside the animal body, are not associated with a regulatory microenvironment (niche) and do participate in aging and regeneration phenomena. These properties can help us to better understand the processes and phenomena in mammalian stem cell biology, such as natural chimerism and cancer, aging and senescence, immunity and autoimmune responses, which are all difficult to explain or understand in the human context. The COST Action 16203 MARISTEM "Stem cells of marine/aquatic invertebrates: from basic research to innovative applications" started in 2017 with the aim to foster the knowledge of the biology of aquatic invertebrates stem cells and strengthen the European community of researchers on aquatic invertebrate stem cells in order to build innovative ideas relevant to various biomedical disciplines. This book represents one of the deliverables of the Action and collects part of the materials produced during the past 3 years within the network as a tool to disseminate and render available what has been achieved up to now. We hope that this book will be useful to scientists interested in stem cells of non-model organisms, with particular reference to aquatic invertebrates.
This text aims to provide readers with a balanced cross-section of current developments within the research on invertebrate cell culture. Attention is focused on such topics as: the biochemistry and physiology of cultured invertebrate cells; aspects of virus infection; novel cultivation methods; assays of viruses affecting shrimp and insect cells; engineering of invertebrate cells for the production of baculovirus pesticides; application of microgravity to in vitro cell cultivation; and other aspects of biotechnology. The large body of information brings into focus the significant recent achievements in the laboratories of Africa, America, Europe and Asia.
Do real stem cells and stem cell lineages exist in lower organisms? Can stem cells from one organism parasitize the soma and/or the germ line of conspecifics? Can differentiated cells in marine organisms be re-programmed to regenerate tissues, organs and appendages through novel de-differentiation, transdifferentiation, or re-differentiation processes, leading to virtually all three germ layers, including the germline? The positive answers to above questions open a new avenue in stem cell research: the biology of stem cells in marine organisms. It is therefore unfortunate that while the literature on stem cell from terrestrial organisms is rich and expanding at an exponential rate, investigations on marine organisms’ stem cells are very limited and scarce. By presenting theoretical chapters, overview essays and specific research results, this book summarises the knowledge and the hypotheses on stem cells in marine organisms through major phyla and specific model organisms. The study on stem cells from marine invertebrates may shed lights on mechanisms promoting immunity, developmental biology, regeneration and budding processes in marine invertebrates, body maintenance, aging and senescence. It aims in encouraging a larger scientific community to follow and study the novel phenomena of stem cells behaviours as depicted from the few currently studied marine invertebrates.
A useful reference for those using or interested in cultured invertebrate cells, this two-volume text provides information about techniques and advances in invertebrate tissue culture. Cell lines for Insecta, Crustacea, Mollusca, and Nematoda are introduces along with their characterizations. Developments in insect biotechnology, including foreign protein production by insect cells infected with recombinant virus are described. Fundamental studies for introducing foreign genes into cultured insect cells is also presented. Wide information on studies -at cellular levels-on pathogens of insects, plants, and vertebrates is given.
I started insect cell culture work in 1962, when T. D. C. Grace reported the first establishment of invertebrate continuous cell lines. He obtained grow ing cells from pupal ovaries of the emperor gum moth, Antheraea euca lypti. At that time, I was trying to obtain growing cells from leafhoppers. Grace's method could not be applied directly to my culture because of the differences in species, the size of the insects, and the tissue to be cul tured. The vertebrate tissue culture methods gave me some ideas for pre paring cultures from leafhoppers, but those could not be used directly either. There were no textbooks and no manuals for invertebrate tissue culture, so I had to develop a method by myself. First, I considered what type and what size of vessels are suitable for insect tissue culture. Also, I had to look for suitable materials to construct the culture vessels. Sec ond, I had to examine various culture media, especially growth-promot ing substances, such as sera. Then I had to improve culture media by trial and error. The procedure to set up a primary culture was also a problem. How could I sterilize materials? How could I remove tissues from a tiny insect? How many tissues should I pool in order to set up one culture? I had to find out the answers. Naturally, it took a lot of time.
The main focus of this book entitled is to provide an up-to-date coverage of marine sponges and their significance in the current era. This book is an attempt to compile an outline of marine sponge research to date, with specific detail on these bioactive compounds, and their pharmacological and biomedical applications. The book encompasses twenty chapters covering various topics related to Marine Sponges. Initial couple of chapters deal about the worldwide status of marine sponge research, the recent findings regarding dynamics of sponges, and several interesting research areas, that are believed to be deserving of increased attention. Variety of sponges, their toxicology, metagenomics, pharmaceutical significance and their possible applications in biomedicine has been discussed in detail. The second half of this part includes chapters on chemical ecology of marine sponges followed by the discussion on importance of bioeroding sponges in aquaculture systems. The following four chapters of the book deal majorly with the chemical molecules of marine sponges. In the fifth chapter, marine sponge-associated actinobacteria and their pysicochemical properties have been discussed followed by their bioactive potential. The biological application of marine sponges has been presented in later chapters with the classification of biologically active compounds being explored in detail. The second half of the book presents the vast repertoire of secondary metabolites from marine sponges, which include terpenoids, heterocycles, acetylenic compounds, steroids and nucleosides. Further, the bioactive potential of these compounds has also been discussed. One of the constituent chapter elaborates the bioactive alkaloids from marine sponges namely, pyridoacridine, indole, isoquinolene, piperidene, quinolizidine, steroidal and bromotyrosine alkaloids isolated from them. In the next couple of chapters, important sponge polymers and the anticancer effects of marine sponge compounds have been presented. The most interesting aspect of sponge biology is their use in biomedical arena. An effort has been made in this book, to cover the major constituents of sponges and their biomedical potentials. The major portion of sponge body is composed of collagen and silica and used in tissue engineering as scaffold material. This part of the book compiles chapters delineating the isolation of sponge biomaterials including collagen and their use in medical diagnostics. Overall, this book would be an important read for novice and experts in the field of sponge biology.
Invertebrate Tissue Culture, Volume I, reviews advances in the use of tissue and organ culture in invertebrate research in physiology and pathology. It describes methods in invertebrate tissue culture, including organ culture techniques in liquid and gel media; aseptic rearing of invertebrates for tissue culture; and cell culture of organisms, ranging from Lepidoptera and Diptera to Coleoptera, Orthoptera, Dictyoptera, Hymenoptera, Hemiptera, Crustacea, Arachnida, Merostomacea, and mollusks. Organized into two sections encompassing 13 chapters, this volume begins with an overview of the general methodology in cell and organ cultures and their preparation from aseptic conditions. It then discusses methods for the examination of cultures, including those concerning ultrastructure studies by electron microscopy. The reader is also introduced to cell cultures obtained from different groups of invertebrates, with emphasis on peculiarities specific to each group; the morphology and physiology of cultured invertebrate cells; and cultivation and growth of cells. This book is a valuable resource for specialists in the field of invertebrate cell and organ culture.