The series is aimed specifically at publishing peer reviewed reviews and contributions presented at workshops and conferences. Each volume is associated with a particular conference, symposium or workshop. These events cover various topics within pure and applied mathematics and provide up-to-date coverage of new developments, methods and applications.
The series is aimed specifically at publishing peer reviewed reviews and contributions presented at workshops and conferences. Each volume is associated with a particular conference, symposium or workshop. These events cover various topics within pure and applied mathematics and provide up-to-date coverage of new developments, methods and applications.
The theory of transcendental numbers is closely related to the study of diophantine approximation. This book deals with values of the usual exponential function ez: a central open problem is the conjecture on algebraic independence of logarithms of algebraic numbers. Two chapters provide complete and simplified proofs of zero estimates (due to Philippon) on linear algebraic groups.
The series is aimed specifically at publishing peer reviewed reviews and contributions presented at workshops and conferences. Each volume is associated with a particular conference, symposium or workshop. These events cover various topics within pure and applied mathematics and provide up-to-date coverage of new developments, methods and applications.
The Indian National Science Academy on the occasion ofthe Golden Jubilee Celebration (Fifty years of India's Independence) decided to publish a number of monographs on the selected fields. The editorial board of INS A invited us to prepare a special monograph in Number Theory. In reponse to this assignment, we invited several eminent Number Theorists to contribute expository/research articles for this monograph on Number Theory. Al though some ofthose invited, due to other preoccupations-could not respond positively to our invitation, we did receive fairly encouraging response from many eminent and creative number theorists throughout the world. These articles are presented herewith in a logical order. We are grateful to all those mathematicians who have sent us their articles. We hope that this monograph will have a significant impact on further development in this subject. R. P. Bambah v. C. Dumir R. J. Hans-Gill A Centennial History of the Prime Number Theorem Tom M. Apostol The Prime Number Theorem Among the thousands of discoveries made by mathematicians over the centuries, some stand out as significant landmarks. One of these is the prime number theorem, which describes the asymptotic distribution of prime numbers. It can be stated in various equivalent forms, two of which are: x (I) K(X) '" -I - as x --+ 00, ogx and Pn '" n log n as n --+ 00. (2) In (1), K(X) denotes the number of primes P ::s x for any x > O.
Diophantine Approximation is a branch of Number Theory having its origins intheproblemofproducing“best”rationalapproximationstogivenrealn- bers. Since the early work of Lagrange on Pell’s equation and the pioneering work of Thue on the rational approximations to algebraic numbers of degree ? 3, it has been clear how, in addition to its own speci?c importance and - terest, the theory can have fundamental applications to classical diophantine problems in Number Theory. During the whole 20th century, until very recent times, this fruitful interplay went much further, also involving Transcend- tal Number Theory and leading to the solution of several central conjectures on diophantine equations and class number, and to other important achie- ments. These developments naturally raised further intensive research, so at the moment the subject is a most lively one. This motivated our proposal for a C. I. M. E. session, with the aim to make it available to a public wider than specialists an overview of the subject, with special emphasis on modern advances and techniques. Our project was kindly supported by the C. I. M. E. Committee and met with the interest of a largenumberofapplicants;forty-twoparticipantsfromseveralcountries,both graduatestudentsandseniormathematicians,intensivelyfollowedcoursesand seminars in a friendly and co-operative atmosphere. The main part of the session was arranged in four six-hours courses by Professors D. Masser (Basel), H. P. Schlickewei (Marburg), W. M. Schmidt (Boulder) and M. Waldschmidt (Paris VI). This volume contains expanded notes by the authors of the four courses, together with a paper by Professor Yu. V.
This is the 13th annual volume of papers based on lectures given at the Seminaire des Nombres de Paris. The results presented here by an international group of mathematicians reflect recent work in many areas of number theory and should form a basis for further discussion on these topics.