Approximation Algorithms and Semidefinite Programming

Approximation Algorithms and Semidefinite Programming

Author: Bernd Gärtner

Publisher: Springer Science & Business Media

Published: 2012-01-10

Total Pages: 253

ISBN-13: 3642220150

DOWNLOAD EBOOK

Semidefinite programs constitute one of the largest classes of optimization problems that can be solved with reasonable efficiency - both in theory and practice. They play a key role in a variety of research areas, such as combinatorial optimization, approximation algorithms, computational complexity, graph theory, geometry, real algebraic geometry and quantum computing. This book is an introduction to selected aspects of semidefinite programming and its use in approximation algorithms. It covers the basics but also a significant amount of recent and more advanced material. There are many computational problems, such as MAXCUT, for which one cannot reasonably expect to obtain an exact solution efficiently, and in such case, one has to settle for approximate solutions. For MAXCUT and its relatives, exciting recent results suggest that semidefinite programming is probably the ultimate tool. Indeed, assuming the Unique Games Conjecture, a plausible but as yet unproven hypothesis, it was shown that for these problems, known algorithms based on semidefinite programming deliver the best possible approximation ratios among all polynomial-time algorithms. This book follows the “semidefinite side” of these developments, presenting some of the main ideas behind approximation algorithms based on semidefinite programming. It develops the basic theory of semidefinite programming, presents one of the known efficient algorithms in detail, and describes the principles of some others. It also includes applications, focusing on approximation algorithms.


The Design of Approximation Algorithms

The Design of Approximation Algorithms

Author: David P. Williamson

Publisher: Cambridge University Press

Published: 2011-04-26

Total Pages: 518

ISBN-13: 9780521195270

DOWNLOAD EBOOK

Discrete optimization problems are everywhere, from traditional operations research planning problems, such as scheduling, facility location, and network design; to computer science problems in databases; to advertising issues in viral marketing. Yet most such problems are NP-hard. Thus unless P = NP, there are no efficient algorithms to find optimal solutions to such problems. This book shows how to design approximation algorithms: efficient algorithms that find provably near-optimal solutions. The book is organized around central algorithmic techniques for designing approximation algorithms, including greedy and local search algorithms, dynamic programming, linear and semidefinite programming, and randomization. Each chapter in the first part of the book is devoted to a single algorithmic technique, which is then applied to several different problems. The second part revisits the techniques but offers more sophisticated treatments of them. The book also covers methods for proving that optimization problems are hard to approximate. Designed as a textbook for graduate-level algorithms courses, the book will also serve as a reference for researchers interested in the heuristic solution of discrete optimization problems.


Aspects of Semidefinite Programming

Aspects of Semidefinite Programming

Author: E. de Klerk

Publisher: Springer Science & Business Media

Published: 2002-03-31

Total Pages: 287

ISBN-13: 1402005474

DOWNLOAD EBOOK

Semidefinite programming has been described as linear programming for the year 2000. It is an exciting new branch of mathematical programming, due to important applications in control theory, combinatorial optimization and other fields. Moreover, the successful interior point algorithms for linear programming can be extended to semidefinite programming. In this monograph the basic theory of interior point algorithms is explained. This includes the latest results on the properties of the central path as well as the analysis of the most important classes of algorithms. Several "classic" applications of semidefinite programming are also described in detail. These include the Lovász theta function and the MAX-CUT approximation algorithm by Goemans and Williamson. Audience: Researchers or graduate students in optimization or related fields, who wish to learn more about the theory and applications of semidefinite programming.


Approximation Algorithms

Approximation Algorithms

Author: Vijay V. Vazirani

Publisher: Springer Science & Business Media

Published: 2013-03-14

Total Pages: 380

ISBN-13: 3662045656

DOWNLOAD EBOOK

Covering the basic techniques used in the latest research work, the author consolidates progress made so far, including some very recent and promising results, and conveys the beauty and excitement of work in the field. He gives clear, lucid explanations of key results and ideas, with intuitive proofs, and provides critical examples and numerous illustrations to help elucidate the algorithms. Many of the results presented have been simplified and new insights provided. Of interest to theoretical computer scientists, operations researchers, and discrete mathematicians.


Approximation Algorithms for NP-hard Problems

Approximation Algorithms for NP-hard Problems

Author: Dorit S. Hochbaum

Publisher: Course Technology

Published: 1997

Total Pages: 632

ISBN-13:

DOWNLOAD EBOOK

This is the first book to fully address the study of approximation algorithms as a tool for coping with intractable problems. With chapters contributed by leading researchers in the field, this book introduces unifying techniques in the analysis of approximation algorithms. APPROXIMATION ALGORITHMS FOR NP-HARD PROBLEMS is intended for computer scientists and operations researchers interested in specific algorithm implementations, as well as design tools for algorithms. Among the techniques discussed: the use of linear programming, primal-dual techniques in worst-case analysis, semidefinite programming, computational geometry techniques, randomized algorithms, average-case analysis, probabilistically checkable proofs and inapproximability, and the Markov Chain Monte Carlo method. The text includes a variety of pedagogical features: definitions, exercises, open problems, glossary of problems, index, and notes on how best to use the book.


Recent Advances in Algorithms and Combinatorics

Recent Advances in Algorithms and Combinatorics

Author: Bruce A. Reed

Publisher: Springer Science & Business Media

Published: 2006-05-17

Total Pages: 357

ISBN-13: 0387224440

DOWNLOAD EBOOK

Excellent authors, such as Lovasz, one of the five best combinatorialists in the world; Thematic linking that makes it a coherent collection; Will appeal to a variety of communities, such as mathematics, computer science and operations research


Complexity and Approximation

Complexity and Approximation

Author: Giorgio Ausiello

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 536

ISBN-13: 3642584128

DOWNLOAD EBOOK

This book documents the state of the art in combinatorial optimization, presenting approximate solutions of virtually all relevant classes of NP-hard optimization problems. The wealth of problems, algorithms, results, and techniques make it an indispensible source of reference for professionals. The text smoothly integrates numerous illustrations, examples, and exercises.


Handbook of Approximation Algorithms and Metaheuristics

Handbook of Approximation Algorithms and Metaheuristics

Author: Teofilo F. Gonzalez

Publisher: CRC Press

Published: 2018-05-15

Total Pages: 840

ISBN-13: 1351236407

DOWNLOAD EBOOK

Handbook of Approximation Algorithms and Metaheuristics, Second Edition reflects the tremendous growth in the field, over the past two decades. Through contributions from leading experts, this handbook provides a comprehensive introduction to the underlying theory and methodologies, as well as the various applications of approximation algorithms and metaheuristics. Volume 1 of this two-volume set deals primarily with methodologies and traditional applications. It includes restriction, relaxation, local ratio, approximation schemes, randomization, tabu search, evolutionary computation, local search, neural networks, and other metaheuristics. It also explores multi-objective optimization, reoptimization, sensitivity analysis, and stability. Traditional applications covered include: bin packing, multi-dimensional packing, Steiner trees, traveling salesperson, scheduling, and related problems. Volume 2 focuses on the contemporary and emerging applications of methodologies to problems in combinatorial optimization, computational geometry and graphs problems, as well as in large-scale and emerging application areas. It includes approximation algorithms and heuristics for clustering, networks (sensor and wireless), communication, bioinformatics search, streams, virtual communities, and more. About the Editor Teofilo F. Gonzalez is a professor emeritus of computer science at the University of California, Santa Barbara. He completed his Ph.D. in 1975 from the University of Minnesota. He taught at the University of Oklahoma, the Pennsylvania State University, and the University of Texas at Dallas, before joining the UCSB computer science faculty in 1984. He spent sabbatical leaves at the Monterrey Institute of Technology and Higher Education and Utrecht University. He is known for his highly cited pioneering research in the hardness of approximation; for his sublinear and best possible approximation algorithm for k-tMM clustering; for introducing the open-shop scheduling problem as well as algorithms for its solution that have found applications in numerous research areas; as well as for his research on problems in the areas of job scheduling, graph algorithms, computational geometry, message communication, wire routing, etc.