Rollout, Policy Iteration, and Distributed Reinforcement Learning

Rollout, Policy Iteration, and Distributed Reinforcement Learning

Author: Dimitri Bertsekas

Publisher: Athena Scientific

Published: 2021-08-20

Total Pages: 498

ISBN-13: 1886529078

DOWNLOAD EBOOK

The purpose of this book is to develop in greater depth some of the methods from the author's Reinforcement Learning and Optimal Control recently published textbook (Athena Scientific, 2019). In particular, we present new research, relating to systems involving multiple agents, partitioned architectures, and distributed asynchronous computation. We pay special attention to the contexts of dynamic programming/policy iteration and control theory/model predictive control. We also discuss in some detail the application of the methodology to challenging discrete/combinatorial optimization problems, such as routing, scheduling, assignment, and mixed integer programming, including the use of neural network approximations within these contexts. The book focuses on the fundamental idea of policy iteration, i.e., start from some policy, and successively generate one or more improved policies. If just one improved policy is generated, this is called rollout, which, based on broad and consistent computational experience, appears to be one of the most versatile and reliable of all reinforcement learning methods. In this book, rollout algorithms are developed for both discrete deterministic and stochastic DP problems, and the development of distributed implementations in both multiagent and multiprocessor settings, aiming to take advantage of parallelism. Approximate policy iteration is more ambitious than rollout, but it is a strictly off-line method, and it is generally far more computationally intensive. This motivates the use of parallel and distributed computation. One of the purposes of the monograph is to discuss distributed (possibly asynchronous) methods that relate to rollout and policy iteration, both in the context of an exact and an approximate implementation involving neural networks or other approximation architectures. Much of the new research is inspired by the remarkable AlphaZero chess program, where policy iteration, value and policy networks, approximate lookahead minimization, and parallel computation all play an important role.


Coordination of Large-Scale Multiagent Systems

Coordination of Large-Scale Multiagent Systems

Author: Paul Scerri

Publisher: Springer Science & Business Media

Published: 2006-03-14

Total Pages: 343

ISBN-13: 0387279725

DOWNLOAD EBOOK

Challenges arise when the size of a group of cooperating agents is scaled to hundreds or thousands of members. In domains such as space exploration, military and disaster response, groups of this size (or larger) are required to achieve extremely complex, distributed goals. To effectively and efficiently achieve their goals, members of a group need to cohesively follow a joint course of action while remaining flexible to unforeseen developments in the environment. Coordination of Large-Scale Multiagent Systems provides extensive coverage of the latest research and novel solutions being developed in the field. It describes specific systems, such as SERSE and WIZER, as well as general approaches based on game theory, optimization and other more theoretical frameworks. It will be of interest to researchers in academia and industry, as well as advanced-level students.


Abstraction, Reformulation, and Approximation

Abstraction, Reformulation, and Approximation

Author: Sven Koenig

Publisher: Springer Science & Business Media

Published: 2002-07-19

Total Pages: 360

ISBN-13: 3540439412

DOWNLOAD EBOOK

It has been recognized since the inception of Artificial Intelligence (AI) that abstractions, problem reformulations, and approximations (AR&A) are central to human common sense reasoning and problem solving and to the ability of systems to reason effectively in complex domains. AR&A techniques have been used to solve a variety of tasks, including automatic programming, constraint satisfaction, design, diagnosis, machine learning, search, planning, reasoning, game playing, scheduling, and theorem proving. The primary purpose of AR&A techniques in such settings is to overcome computational intractability. In addition, AR&A techniques are useful for accelerating learning and for summarizing sets of solutions. This volume contains the proceedings of SARA 2002, the fifth Symposium on Abstraction, Reformulation, and Approximation, held at Kananaskis Mountain Lodge, Kananaskis Village, Alberta (Canada), August 2 4, 2002. The SARA series is the continuation of two separate threads of workshops: AAAI workshops in 1990 and 1992, and an ad hoc series beginning with the "Knowledge Compilation" workshop in 1986 and the "Change of Representation and Inductive Bias" workshop in 1988 with followup workshops in 1990 and 1992. The two workshop series merged in 1994 to form the first SARA. Subsequent SARAs were held in 1995, 1998, and 2000.


A Concise Introduction to Multiagent Systems and Distributed Artificial Intelligence

A Concise Introduction to Multiagent Systems and Distributed Artificial Intelligence

Author: Nikos Kolobov

Publisher: Springer Nature

Published: 2022-06-01

Total Pages: 71

ISBN-13: 3031015436

DOWNLOAD EBOOK

Multiagent systems is an expanding field that blends classical fields like game theory and decentralized control with modern fields like computer science and machine learning. This monograph provides a concise introduction to the subject, covering the theoretical foundations as well as more recent developments in a coherent and readable manner. The text is centered on the concept of an agent as decision maker. Chapter 1 is a short introduction to the field of multiagent systems. Chapter 2 covers the basic theory of singleagent decision making under uncertainty. Chapter 3 is a brief introduction to game theory, explaining classical concepts like Nash equilibrium. Chapter 4 deals with the fundamental problem of coordinating a team of collaborative agents. Chapter 5 studies the problem of multiagent reasoning and decision making under partial observability. Chapter 6 focuses on the design of protocols that are stable against manipulations by self-interested agents. Chapter 7 provides a short introduction to the rapidly expanding field of multiagent reinforcement learning. The material can be used for teaching a half-semester course on multiagent systems covering, roughly, one chapter per lecture.


Advanced Machine Learning Approaches in Cancer Prognosis

Advanced Machine Learning Approaches in Cancer Prognosis

Author: Janmenjoy Nayak

Publisher: Springer Nature

Published: 2021-05-29

Total Pages: 461

ISBN-13: 3030719758

DOWNLOAD EBOOK

This book introduces a variety of advanced machine learning approaches covering the areas of neural networks, fuzzy logic, and hybrid intelligent systems for the determination and diagnosis of cancer. Moreover, the tactical solutions of machine learning have proved its vast range of significance and, provided novel solutions in the medical field for the diagnosis of disease. This book also explores the distinct deep learning approaches that are capable of yielding more accurate outcomes for the diagnosis of cancer. In addition to providing an overview of the emerging machine and deep learning approaches, it also enlightens an insight on how to evaluate the efficiency and appropriateness of such techniques and analysis of cancer data used in the cancer diagnosis. Therefore, this book focuses on the recent advancements in the machine learning and deep learning approaches used in the diagnosis of different types of cancer along with their research challenges and future directions for the targeted audience including scientists, experts, Ph.D. students, postdocs, and anyone interested in the subjects discussed.


Multiagent System Technologies

Multiagent System Technologies

Author: Ralph Bergmann

Publisher: Springer

Published: 2008-09-19

Total Pages: 217

ISBN-13: 354087805X

DOWNLOAD EBOOK

For the sixth time, the German special interest group on Distributed Arti?cial Intelligence in cooperation with the Steering Committee of MATES organized the German Conference on Multiagent System Technologies – MATES 2008. This conference, which took place during September 23–26, 2008 in Kaisersla- ern, followed a series of successful predecessor conferences in Erfurt (2003, 2004, and 2006), Koblenz (2005), and Leipzig (2007). MATES 2008 was co-located with the 31st German Conference on Arti?cial Intelligence (KI 2008) and was hosted by the University of Kaiserslautern and the German Research Center for Arti?cial Intelligence (DFKI). As in recent years, MATES 2008 provided a distinguished, lively, and - terdisciplinary forum for researchers, users, and developers of agent technology to present and discuss the latest advances of research and development in the area of autonomous agents and multiagent systems. Accordingly, the topics of MATES 2008 covered the whole range: from the theory to applications of agent and multiagent technology. In all, 35 papers were submitted from authors from 11 countries. The accepted 16 full papers included in this proceedings volume and presented as talks at the conference were chosen based on a thorough and highly selective review process. Each paper was reviewed and discussed by at least three Program Committee members and revised according to their c- ments. We believe that the papers of this volume are a representative snapshot of current research and contribute to both theoretical and applied aspects of autonomous agents and multiagent systems.


Adaption and Learning in Multi-agent Systems

Adaption and Learning in Multi-agent Systems

Author: Gerhard Weiss

Publisher:

Published: 1996

Total Pages: 262

ISBN-13:

DOWNLOAD EBOOK

"This book is based on the workshop on Adaptation and Learning in Multi-Agent Systems, held in conjunction with the International Joint Conference on Artificial Intelligence, IJCAI'95, in Montreal, Canada in August 1995. The 14 thoroughly reviewed revised papers reflect the whole scope of current aspects in the field: they describe and analyze, both experimentally and theoretically, new learning and adaption approaches for situations in which several agents have to cooperate or compete. Also included, and aimed at the novice reader, are a comprehensive introductory survey on the area with 154 references listed and a subject index. As the first book solely devoted to this area, this volume documents the state of the art and is thus indispensable for anyone active or interested in the field."--PUBLISHER'S WEBSITE.


From Animals to Animats 2

From Animals to Animats 2

Author: Jean-Arcady Meyer

Publisher: MIT Press

Published: 1993

Total Pages: 1018

ISBN-13: 9780262631495

DOWNLOAD EBOOK

More than sixty contributions in From Animals to Animats 2 byresearchers in ethology, ecology, cybernetics, artificial intelligence, robotics, and related fieldsinvestigate behaviors and the underlying mechanisms that allow animals and, potentially, robots toadapt and survive in uncertain environments. Jean-Arcady Meyer is Director of Research, CNRS, Paris.Herbert L. Roitblat is Professor of Psychology at the University of Hawaii at Manoa. Stewart W.Wilson is a scientist at The Rowland Institute for Science, Cambridge,Massachusetts. Topics covered: The Animat Approach to Adaptive Behavior,Perception and Motor Control, Action Selection and Behavioral Sequences, Cognitive Maps and InternalWorld Models, Learning, Evolution, Collective Behavior.


Interactions In Multiagent Systems

Interactions In Multiagent Systems

Author: Jianye Hao

Publisher: World Scientific

Published: 2018-07-31

Total Pages: 333

ISBN-13: 9813208759

DOWNLOAD EBOOK

This compendium covers several important topics related to multiagent systems, from learning and game theoretic analysis, to automated negotiation and human-agent interaction. Each chapter is written by experienced researchers working on a specific topic in mutliagent system interactions, and covers the state-of-the-art research results related to that topic.The book will be a good reference material for researchers and graduate students working in the area of artificial intelligence/machine learning, and an inspirational read for those in social science, behavioural economics and psychology.