Applied Time Series Econometrics

Applied Time Series Econometrics

Author: Helmut Lütkepohl

Publisher: Cambridge University Press

Published: 2004-08-02

Total Pages: 351

ISBN-13: 1139454730

DOWNLOAD EBOOK

Time series econometrics is a rapidly evolving field. Particularly, the cointegration revolution has had a substantial impact on applied analysis. Hence, no textbook has managed to cover the full range of methods in current use and explain how to proceed in applied domains. This gap in the literature motivates the present volume. The methods are sketched out, reminding the reader of the ideas underlying them and giving sufficient background for empirical work. The treatment can also be used as a textbook for a course on applied time series econometrics. Topics include: unit root and cointegration analysis, structural vector autoregressions, conditional heteroskedasticity and nonlinear and nonparametric time series models. Crucial to empirical work is the software that is available for analysis. New methodology is typically only gradually incorporated into existing software packages. Therefore a flexible Java interface has been created, allowing readers to replicate the applications and conduct their own analyses.


Applied Time Series Analysis

Applied Time Series Analysis

Author: Terence C. Mills

Publisher: Academic Press

Published: 2019-01-24

Total Pages: 354

ISBN-13: 0128131179

DOWNLOAD EBOOK

Written for those who need an introduction, Applied Time Series Analysis reviews applications of the popular econometric analysis technique across disciplines. Carefully balancing accessibility with rigor, it spans economics, finance, economic history, climatology, meteorology, and public health. Terence Mills provides a practical, step-by-step approach that emphasizes core theories and results without becoming bogged down by excessive technical details. Including univariate and multivariate techniques, Applied Time Series Analysis provides data sets and program files that support a broad range of multidisciplinary applications, distinguishing this book from others.


Applied Econometrics with R

Applied Econometrics with R

Author: Christian Kleiber

Publisher: Springer Science & Business Media

Published: 2008-12-10

Total Pages: 229

ISBN-13: 0387773185

DOWNLOAD EBOOK

R is a language and environment for data analysis and graphics. It may be considered an implementation of S, an award-winning language initially - veloped at Bell Laboratories since the late 1970s. The R project was initiated by Robert Gentleman and Ross Ihaka at the University of Auckland, New Zealand, in the early 1990s, and has been developed by an international team since mid-1997. Historically, econometricians have favored other computing environments, some of which have fallen by the wayside, and also a variety of packages with canned routines. We believe that R has great potential in econometrics, both for research and for teaching. There are at least three reasons for this: (1) R is mostly platform independent and runs on Microsoft Windows, the Mac family of operating systems, and various ?avors of Unix/Linux, and also on some more exotic platforms. (2) R is free software that can be downloaded and installed at no cost from a family of mirror sites around the globe, the Comprehensive R Archive Network (CRAN); hence students can easily install it on their own machines. (3) R is open-source software, so that the full source code is available and can be inspected to understand what it really does, learn from it, and modify and extend it. We also like to think that platform independence and the open-source philosophy make R an ideal environment for reproducible econometric research.


Applied Econometric Time Series

Applied Econometric Time Series

Author: Walter Enders

Publisher: Wiley

Published: 2003-08-01

Total Pages: 480

ISBN-13: 9780471230656

DOWNLOAD EBOOK

Amstat News asked three review editors to rate their top five favorite books in the September 2003 issue. The first edition of Applied Econometric Time Series was among those chosen. This new edition reflects recent advances in time-series econometrics, such as out-of-sample forecasting techniques, non-linear time-series models, Monte Carlo analysis, and bootstrapping. Numerous examples from fields ranging from agricultural economics to transnational terrorism illustrate various techniques.


Essentials of Time Series for Financial Applications

Essentials of Time Series for Financial Applications

Author: Massimo Guidolin

Publisher: Academic Press

Published: 2018-05-29

Total Pages: 435

ISBN-13: 0128134100

DOWNLOAD EBOOK

Essentials of Time Series for Financial Applications serves as an agile reference for upper level students and practitioners who desire a formal, easy-to-follow introduction to the most important time series methods applied in financial applications (pricing, asset management, quant strategies, and risk management). Real-life data and examples developed with EViews illustrate the links between the formal apparatus and the applications. The examples either directly exploit the tools that EViews makes available or use programs that by employing EViews implement specific topics or techniques. The book balances a formal framework with as few proofs as possible against many examples that support its central ideas. Boxes are used throughout to remind readers of technical aspects and definitions and to present examples in a compact fashion, with full details (workout files) available in an on-line appendix. The more advanced chapters provide discussion sections that refer to more advanced textbooks or detailed proofs. - Provides practical, hands-on examples in time-series econometrics - Presents a more application-oriented, less technical book on financial econometrics - Offers rigorous coverage, including technical aspects and references for the proofs, despite being an introduction - Features examples worked out in EViews (9 or higher)


Introduction to Modern Time Series Analysis

Introduction to Modern Time Series Analysis

Author: Gebhard Kirchgässner

Publisher: Springer Science & Business Media

Published: 2008-08-27

Total Pages: 288

ISBN-13: 9783540687351

DOWNLOAD EBOOK

This book presents modern developments in time series econometrics that are applied to macroeconomic and financial time series. It contains the most important approaches to analyze time series which may be stationary or nonstationary.


Applied Economic Forecasting Using Time Series Methods

Applied Economic Forecasting Using Time Series Methods

Author: Eric Ghysels

Publisher: Oxford University Press

Published: 2018

Total Pages: 617

ISBN-13: 0190622016

DOWNLOAD EBOOK

Economic forecasting is a key ingredient of decision making in the public and private sectors. This book provides the necessary tools to solve real-world forecasting problems using time-series methods. It targets undergraduate and graduate students as well as researchers in public and private institutions interested in applied economic forecasting.


Econometric Modelling with Time Series

Econometric Modelling with Time Series

Author: Vance Martin

Publisher: Cambridge University Press

Published: 2013

Total Pages: 925

ISBN-13: 0521139813

DOWNLOAD EBOOK

"Maximum likelihood estimation is a general method for estimating the parameters of econometric models from observed data. The principle of maximum likelihood plays a central role in the exposition of this book, since a number of estimators used in econometrics can be derived within this framework. Examples include ordinary least squares, generalized least squares and full-information maximum likelihood. In deriving the maximum likelihood estimator, a key concept is the joint probability density function (pdf) of the observed random variables, yt. Maximum likelihood estimation requires that the following conditions are satisfied. (1) The form of the joint pdf of yt is known. (2) The specification of the moments of the joint pdf are known. (3) The joint pdf can be evaluated for all values of the parameters, 9. Parts ONE and TWO of this book deal with models in which all these conditions are satisfied. Part THREE investigates models in which these conditions are not satisfied and considers four important cases. First, if the distribution of yt is misspecified, resulting in both conditions 1 and 2 being violated, estimation is by quasi-maximum likelihood (Chapter 9). Second, if condition 1 is not satisfied, a generalized method of moments estimator (Chapter 10) is required. Third, if condition 2 is not satisfied, estimation relies on nonparametric methods (Chapter 11). Fourth, if condition 3 is violated, simulation-based estimation methods are used (Chapter 12). 1.2 Motivating Examples To highlight the role of probability distributions in maximum likelihood estimation, this section emphasizes the link between observed sample data and 4 The Maximum Likelihood Principle the probability distribution from which they are drawn"-- publisher.


The Econometric Analysis of Seasonal Time Series

The Econometric Analysis of Seasonal Time Series

Author: Eric Ghysels

Publisher: Cambridge University Press

Published: 2001-06-18

Total Pages: 258

ISBN-13: 9780521565882

DOWNLOAD EBOOK

Eric Ghysels and Denise R. Osborn provide a thorough and timely review of the recent developments in the econometric analysis of seasonal economic time series, summarizing a decade of theoretical advances in the area. The authors discuss the asymptotic distribution theory for linear nonstationary seasonal stochastic processes. They also cover the latest contributions to the theory and practice of seasonal adjustment, together with its implications for estimation and hypothesis testing. Moreover, a comprehensive analysis of periodic models is provided, including stationary and nonstationary cases. The book concludes with a discussion of some nonlinear seasonal and periodic models. The treatment is designed for an audience of researchers and advanced graduate students.