Applied Thermal Measurements At The Nanoscale: A Beginner's Guide To Electrothermal Methods

Applied Thermal Measurements At The Nanoscale: A Beginner's Guide To Electrothermal Methods

Author: Zhen Chen

Publisher: World Scientific

Published: 2018-07-13

Total Pages: 161

ISBN-13: 9813271124

DOWNLOAD EBOOK

This book aims to serve as a practical guide for novices to design and conduct measurements of thermal properties at the nanoscale using electrothermal techniques. An outgrowth of the authors’ tutorials for new graduate students in their own labs, it includes practical details on measurement design and selection, sensitivity and uncertainty analysis, and pitfalls and verifications. The information is particularly helpful for someone setting up their own experiment for the first time. The book emphasizes the integration of thermal analysis with practical experimental considerations, in order to design an experiment for best sensitivity and to configure the laboratory instruments accordingly. The focus is on the measurements of thermal conductivity, though thermal diffusivity and thermal boundary resistance (thermal contact resistance) are also briefly covered, and many of the principles can be generalized to other challenging thermal measurements.The reader is only expected to have the basic familiarity with electrical instruments typical of a university graduate in science or engineering, and an acquaintance with the elementary laws of heat transfer by conduction, convection, and radiation.


Applied Thermal Measurements at the Nanoscale

Applied Thermal Measurements at the Nanoscale

Author: Christopher Eric Dames

Publisher:

Published: 1999

Total Pages: 161

ISBN-13: 9789813271111

DOWNLOAD EBOOK

"This book can serve as a practical guide for novices to design and conduct measurements of thermal properties at the nanoscale using electrothermal techniques. An outgrowth of the authors' tutorials for new graduate students in their own labs, it includes practical details on measurement design and selection, sensitivity and uncertainty analysis, and pitfalls and verifications. The information is particularly helpful for a novice setting up their own experiment for the first time. How to use thermal analysis to design an experiment for best sensitivity is shown, as well as how to configure the laboratory instruments accordingly. The emphasis is on the measurements of thermal conductivity, though thermal diffusivity and thermal boundary resistance (thermal contact resistance) are also briefly covered, and many of the principles can be generalized to other challenging thermal measurements. The reader is only expected to have the basic familiarity with electrical instruments typical of a graduate in science or engineering, and an acquaintance with the elementary laws of heat transfer by conduction, convection, and radiation"--


Applied Thermal Measurements at the Nanoscale

Applied Thermal Measurements at the Nanoscale

Author: Chris Dames

Publisher:

Published: 2018-09-05

Total Pages: 160

ISBN-13: 9789811212987

DOWNLOAD EBOOK

This book aims to serve as a practical guide for novices to design and conduct measurements of thermal properties at the nanoscale using electrothermal techniques. An outgrowth of the authorsâ (TM) tutorials for new graduate students in their own labs, it includes practical details on measurement design and selection, sensitivity and uncertainty analysis, and pitfalls and verifications. The information is particularly helpful for someone setting up their own experiment for the first time. The book emphasizes the integration of thermal analysis with practical experimental considerations, in order to design an experiment for best sensitivity and to configure the laboratory instruments accordingly. The focus is on the measurements of thermal conductivity, though thermal diffusivity and thermal boundary resistance (thermal contact resistance) are also briefly covered, and many of the principles can be generalized to other challenging thermal measurements.The reader is only expected to have the basic familiarity with electrical instruments typical of a university graduate in science or engineering, and an acquaintance with the elementary laws of heat transfer by conduction, convection, and radiation.


Fundamentals Of Electronic Materials And Devices: A Gentle Introduction To The Quantum-classical World

Fundamentals Of Electronic Materials And Devices: A Gentle Introduction To The Quantum-classical World

Author: Avik Ghosh

Publisher: World Scientific

Published: 2023-02-02

Total Pages: 349

ISBN-13: 9811265976

DOWNLOAD EBOOK

The Romans built enduring bridges well before Newton came along, armed simply with a working knowledge of mechanics and materials. In contrast, today's bridge building is an elaborate enterprise involving CAD tools, composite materials and acoustic imaging. When technology is pushed to its limits, a working knowledge proves inadequate, and an in-depth understanding of core physical principles, both macroscopic and microscopic, top-down vs bottom-up, becomes essential.We find ourselves today at a similar crossroad in semiconductor device technology, where a working knowledge of solid state electronics is no longer enough. Faced with the prohibitive cost of computing and the slowdown of chip manufacturing, device scaling and the global supply chain, the semiconductor industry is forced to explore alternate platforms such as 2-D materials, spintronics, analog processing and quantum engineering.This book combines top-down classical device physics with bottom-up quantum transport in a single venue to provide the basis for such a scientific exploration. It is essential, easy reading for beginning undergraduate and practicing graduate students, physicists unfamiliar with device engineering and engineers untrained in quantum physics. With just a modest pre-requisite of freshman maths, the book works quickly through key concepts in quantum physics, Matlab exercises and original homeworks, to cover a wide range of topics from chemical bonding to Hofstader butterflies, domain walls to Chern insulators, solar cells to photodiodes, FinFETs to Majorana fermions. For the practicing device engineer, it provides new concepts such as the quantum of resistance, while for the practicing quantum physicist, it provides new contexts such as the tunnel transistor.


Near-equilibrium Transport: Fundamentals And Applications

Near-equilibrium Transport: Fundamentals And Applications

Author: Mark S Lundstrom

Publisher: World Scientific Publishing Company

Published: 2012-11-29

Total Pages: 250

ISBN-13: 9814452246

DOWNLOAD EBOOK

These lectures are designed to introduce students to the fundamentals of carrier transport in nano-devices using a novel, “bottom up approach” that agrees with traditional methods when devices are large, but which also works for nano-devices. The goal is to help students learn how to think about carrier transport at the nanoscale and also how the bottom up approach provides a new perspective to traditional concepts like mobility and drift-diffusion equations. The lectures are designed for engineers and scientists and others who need a working knowledge of near-equilibrium (“low-field” or “linear”) transport. Applications of the theory and measurement considerations are also addressed. The lectures serve as a starting point to an extensive set of instructional materials available online.


Fundamentals of Rocket Propulsion

Fundamentals of Rocket Propulsion

Author: DP Mishra

Publisher: CRC Press

Published: 2017-07-20

Total Pages: 364

ISBN-13: 1351708414

DOWNLOAD EBOOK

The book follows a unified approach to present the basic principles of rocket propulsion in concise and lucid form. This textbook comprises of ten chapters ranging from brief introduction and elements of rocket propulsion, aerothermodynamics to solid, liquid and hybrid propellant rocket engines with chapter on electrical propulsion. Worked out examples are also provided at the end of chapter for understanding uncertainty analysis. This book is designed and developed as an introductory text on the fundamental aspects of rocket propulsion for both undergraduate and graduate students. It is also aimed towards practicing engineers in the field of space engineering. This comprehensive guide also provides adequate problems for audience to understand intricate aspects of rocket propulsion enabling them to design and develop rocket engines for peaceful purposes.


High Sensitivity Magnetometers

High Sensitivity Magnetometers

Author: Asaf Grosz

Publisher: Springer

Published: 2016-09-20

Total Pages: 576

ISBN-13: 3319340700

DOWNLOAD EBOOK

This book gathers, for the first time, an overview of nearly all of the magnetic sensors that exist today. The book is offering the readers a thorough and comprehensive knowledge from basics to state-of-the-art and is therefore suitable for both beginners and experts. From the more common and popular AMR magnetometers and up to the recently developed NV center magnetometers, each chapter is describing a specific type of sensor and providing all the information that is necessary to understand the magnetometer behavior including theoretical background, noise model, materials, electronics, design and fabrication techniques, etc.


Eco-efficient Pavement Construction Materials

Eco-efficient Pavement Construction Materials

Author: F. Pacheco-Torgal

Publisher: Woodhead Publishing

Published: 2020-01-18

Total Pages: 424

ISBN-13: 0128189827

DOWNLOAD EBOOK

Eco-efficient Pavement Construction Materials acquaints engineers with research findings on new eco-efficient pavement materials and how they can be incorporated into future pavements. Divided into three distinctive parts, the book emphasizes current research topics such as pavements with recycled waste, pavements for climate change mitigation, self-healing pavements, and pavements with energy harvesting potential. Part One considers techniques for recycling, Part Two reviews the contribution of pavements for climate change mitigation, including cool pavements, the development of new coatings for high albedo targets, and the design of pervious pavements. Finally, Part Three focuses on self-healing pavements, addressing novel materials and design and performance. Finally, the book discusses the case of pavements with energy harvesting potential, addressing different technologies on this field. - Offers a clear and concise lifecycle assessment of asphalt pavement recycling for greenhouse gas emission with temporal aspects - Applies key research trends to green the pavement industry - Includes techniques for recycling waste materials, the design of cool pavements, self-healing mechanisms, and key steps in energy harvesting


Spark Plasma Sintering of Materials

Spark Plasma Sintering of Materials

Author: Pasquale Cavaliere

Publisher: Springer

Published: 2019-02-18

Total Pages: 767

ISBN-13: 303005327X

DOWNLOAD EBOOK

This book describes spark plasma sintering (SPS) in depth. It addresses fundamentals and material-specific considerations, techniques, and applications across a broad spectrum of materials. The book highlights methods used to consolidate metallic or ceramic particles in very short times. It highlights the production of complex alloys and metal matrix composites with enhanced mechanical and wear properties. Emphasis is placed on the speed of the sintering processes, uniformity in product microstructure and properties, reduced grain growth, the compaction and sintering of materials in one processing step, various materials processing, and high energy efficiency. Current and potential applications in space science and aeronautics, automation, mechanical engineering, and biomedicine are addressed throughout the book.


Fundamentals Of Atomic Force Microscopy - Part I: Foundations

Fundamentals Of Atomic Force Microscopy - Part I: Foundations

Author: Ronald G Reifenberger

Publisher: World Scientific

Published: 2015-09-29

Total Pages: 341

ISBN-13: 9814630373

DOWNLOAD EBOOK

The atomic force microscope (AFM) is a highly interdisciplinary instrument that enables measurements of samples in liquid, vacuum or air with unprecedented resolution. The intelligent use of this instrument requires knowledge from many distinct fields of study. These lecture notes aim to provide advanced undergraduates and beginning graduates in all fields of science and engineering with the required knowledge to sensibly use an AFM. Relevant background material is often reviewed in depth and summarized in a pedagogical, self-paced style to provide a fundamental understanding of the scientific principles underlying the use and operation of an AFM. Useful as a study guide to “Fundamentals of AFM”, an online video course available at https://nanohub.org/courses/AFM1/Suitable for Graduate/Undergraduate Independent Reading and Research Course in AFM (with the combination of book and online videos)